Person: ERZİK, CAN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ERZİK
First Name
CAN
Name
11 results
Search Results
Now showing 1 - 10 of 11
Publication Metadata only Resveratrol protects against irradiation-induced hepatic and ileal damage via its anti-oxidative activity(TAYLOR & FRANCIS LTD, 2009) VELİOĞLU ÖĞÜNÇ, AYLİZ; Velioglu-Ogunc, Ayliz; Sehirli, Ozer; Toklu, Hale Z.; Ozyurt, Hazan; Mayadagli, Alpaslan; Eksioglu-Demiralp, Emel; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, GoekselThe present study was undertaken to determine whether resveratrol (RVT) could ameliorate ionizing radiation-induced oxidative injury. After a 10-days pre-treatment with RVT (10 mg/kg/day p.o.), rats were exposed to whole-body IR (800 cGy) and the RVT treatment was continued for 10 more days after the irradiation. Irradiation caused a significant decrease in glutathione level, while malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the liver and ileum tissues. Similarly, plasma lactate dehydrogenase and pro-inflammatory cytokine levels, 8-hydroxy-2'-deoxyguanosine and leukocyte apoptosis were elevated, while antioxidant-capacity was reduced in the irradiated rats as compared with the control group. Furthermore, Na-1, K-1 -ATPase activity was inhibited and DNA fragmentation was increased in the ileal tissues. Resveratrol treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. In conclusion, supplementing cancer patients with adjuvant therapy of resveratrol may have some benefit for a more successful radiotherapy.Publication Open Access Protective effects of St. John's wort in the hepatic ischemia/reperfusion injury in rats(AVES, 2018-09-28) VELİOĞLU ÖĞÜNÇ, AYLİZ; Atalay, Suleyman; Soylu, Belkis; Aykac, Asli; Ogunc, Ayliz Velioglu; Cetinel, Sule; Ozkan, Naziye; Erzik, Can; Sehirli, Ahmet OzerObjectives: The purpose of this study was to investigate possible protective effects of St. John's wort in the hepatic ischemia/reperfusion injury. Material and Methods: The hepatic artery, portal vein, and bile duct were all clamped for 45 minutes to induce ischemia in rats, and after that reperfusion for 1 hour. SJW was administrated orally, once a day for 3 days before ischemia/reperfusion. The aspartate aminotransferase, alanine aminotransferase, tumor necrosis factor, and interleukin levels were measured in the serum samples. Luminol chemiluminescence, lucigenin luminol chemiluminescence levels; myeloperoxidase. The sodium-potassium ATPase (Na+/K+ ATPase) activity was determined in the liver tissue, and caspase-3 and caspase-9 activity with the bcl-2/bax ratio were measured by the western blot analysis. Results: The St. John's wort administration recovered the aspartate aminotransferase, alanine aminotransferase, tumor necrosis factor, and IL-1 beta levels serum parameters meaningfully, while ischemia/reperfusion caused an increase in luminol chemiluminescence, lucigenin luminol chemiluminescence, myeloperoxidase, caspase-3, and caspase-9 activity and led to a decrease in the B-cell lymphoma-2/bcl-2-associated X protein (bcl-2/bax) ratio and the Na+/K+ ATPase activity. Conclusion: The obtained results indicate protective effects of St. John's wort on the ischemia/reperfusion injury through various mechanisms, and we are able to suggest that St. John's wort can clinically create a new therapeutic principle.Publication Open Access Effects of Circadian Rhythm Hormones Melatonin and 5-Methoxytryptophol on COXs, Raf-1 and STAT3(2018-08-01) ERZİK, CAN; Savtekin, Gokce; Serakinci, Nedime; Erzik, Can; Cetinel, Sule; Sehirli, Ahmet OzerPublication Metadata only Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines(ELSEVIER SCIENCE INC, 2008) YEGEN, BERRAK; Sehirli, Oezer; Sener, Emre; Sener, Goeksel; Cetinel, Sule; Erzik, Can; Yegen, Berrak C.Mechanisms of burn-induced skin and remote organ injury involve oxidant generation and the release of pro-inflammatory cytokines. In this study the possible antioxidant and anti-inflammatory effects of ghrelin were evaluated in a rat model of thermal trauma. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. Ghrelin, was administered subcutaneously (10 ng/kg/day) after the burn injury and repeated twice daily. Rats were decapitated at 6 h and 48 h after burn injury and blood was collected for the analysis of pro-inflammatory cytokines (TNF-alpha and IL-1 beta), lactate dehydrogenase (LDH) activity and antioxidant capacity (AOC). In skin, lung and stomach tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+-ATPase activity were measured in addition to the histological analysis. DNA fragmentation ratio in the gastric mucosa was also evaluated. Burn injury caused significant increase in both cytokine levels, and LDH activity, while plasma ACC was found to be depleted after thermal trauma. On the other hand, in tissue samples the raised MDA levels, MPO activity and reduced GSH levels, Na+-K+-ATPase activity due to burn injury were found at control levels in ghrelin-treated groups, while DNA fragmentation in the gastric tissue was also reduced. According to the findings of the present study, ghrelin possesses a neutrophil-dependent anti-inflammatory effect that prevents burn-induced damage in skin and remote organs and protects against oxidative organ damage. (C) 2008 Elsevier Inc. All rights reserved.Publication Metadata only The Anti-Inflammatory and Neuroprotective Effects of Ghrelin in Subarachnoid Hemorrhage-Induced Oxidative Brain Damage in Rats(MARY ANN LIEBERT, INC, 2010) VELİOĞLU ÖĞÜNÇ, AYLİZ; Ersahin, Mehmet; Toklu, Hale Z.; Erzik, Can; Cetinel, Sule; Akakin, Dilek; Velioglu-Ogunc, Ayliz; Tetik, Sermin; Ozdemir, Zarife N.; Sener, Goeksel; Yegen, Berrak C.To elucidate the putative neuroprotective effects of ghrelin in subarachnoid hemorrhage (SAH)- induced brain injury, Wistar albino rats (n=54) were divided into sham-operated control, saline-treated SAH, and ghrelin-treated (10 mu g/kg/d IP) SAH groups. The rats were injected with blood (0.3mL) into the cisterna magna to induce SAH, and were sacrificed 48 h after the neurological examination scores were recorded. In plasma samples, neuron-specific enolase (NSE), S-100 beta protein, TNF-alpha, and IL-1 beta levels were evaluated, while forebrain tissue samples were taken for the measurement of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species levels, myeloperoxidase (MPO), Na+-K+-ATPase activity, and DNA fragmentation ratio. Brain tissue samples containing the basilar arteries were obtained for histological examination, while cerebrum and cerebellum were removed for the measurement of blood-brain barrier (BBB) permeability and brain water content. The neurological scores were impaired at 48 h after SAH induction, and SAH caused significant decreases in brain GSH content and Na+-K+-ATPase activity, and increases in chemiluminescence, MDA levels, and MPO activity. Compared with the control group, the protein levels of NSE, S-100 beta, TNF-alpha, and IL-1 beta in plasma were also increased, while ghrelin treatment prevented all SAH-induced alterations observed both biochemically and histopathologically. The results demonstrate that ghrelin alleviates SAH-induced oxidative brain damage, and exerts neuroprotection by maintaining a balance in oxidant-antioxidant status, by inhibiting proinflammatory mediators, and preventing the depletion of endogenous antioxidants evoked by SAH.Publication Metadata only Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats(KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, GokselBackground/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.Publication Metadata only Alpha Lipoic Acid Alleviates Oxidative Stress and Preserves Blood Brain Permeability in Rats with Subarachnoid Hemorrhage(SPRINGER/PLENUM PUBLISHERS, 2010) YEGEN, BERRAK; Ersahin, Mehmet; Toklu, Hale Z.; Cetinel, Sule; Yuksel, Meral; Erzik, Can; Berkman, M. Zafer; Yegen, Berrak C.; Sener, GoekselThe neuroprotective effect of alpha lipoic acid (ALA; 100 mg/kg, po), a dithiol antioxidant, on experimentally induced subarachnoid hemorrhage (SAH) was assessed in Wistar albino rats. Neurological examination scores recorded at the 48th h of SAH induction were increased in SAH groups, which were accompanied with significant increases in the formation of reactive oxygen species, DNA fragmentation ratios, malondialdehyde levels and myeloperoxidase activity, while significant decreases in the brain glutathione content and Na+, K+-ATPase activity were observed. On the other hand, ALA treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations. Increased brain edema, impaired blood-brain-barrier permeability and neurological scores were also improved by ALA treatment. The results demonstrate that ALA exerts neuroprotective effects via the enhancement of endogenous antioxidant enzyme activity, the inhibition of neutrophil accumulation and free radical generation, suggesting a therapeutic potential in reducing secondary injury after SAH in patients.Publication Open Access Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2(ELSEVIER SCIENCE BV, 2015-04) ATASOY, BESTE MELEK; Deniz, Mustafa; Atasoy, Beste M.; Dane, Faysal; Can, Guray; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.Purpose: The present study was conducted to characterize the possible therapeutic effects of glucagon-like peptide (GLP)-1 and GLP-2 against oxidative damage in the ileum and colon of irradiated rats. Methods and materials: Sprague-Dawley rats of both sexes received either a single dose of GLP-1 (0.1 nmol/kg, intraperitoneally, ip; n = 6) 10 min before abdominal irradiation (IR) or two consecutive doses of GLP-2 (7 nmol/kg, ip; n = 6) at 30 and 10 min before IR, while another group was administered vehicle (n = 6) 10 min before IR. Control rats (n = 6) received vehicle treatment without IR. On the fourth day of IR, samples from ileum and colon were removed for histological analysis, for the determination of myeloperoxidase (MPO) activity, malondialdehyde (MDA) and glutathione (GSH) levels, as well as DNA fragmentation ratio, an index of apoptosis. Results: IR-induced oxidative injury in the colonic tissue of vehicle-treated rats, evidenced by elevated MDA levels and MPO activity, as well as depleted colonic GSH levels, was reversed by GLP-2, while GLP-1 reduced IR-induced elevations in colonic MDA levels. IR-induced injury with elevated ileal MDA levels was reduced by GLP-1, while replenishment in GSH was observed in GLP-2-treated rats. Conclusion: Current findings suggest that GLP-1 and GLP-2 appear to have protective roles in the irradiation-induced oxidative damage of the gut by inhibiting neutrophil infiltration and subsequent activation of inflammatory mediators that induce lipid peroxidation. Copyright (C) 2015, The Egyptian Society of Radiation Sciences and Applications. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.Publication Metadata only Protective effects of spironolactone against hepatic ischemia/reperfusion injury in rats(TURKISH SURGICAL ASSOC, 2019) VELİOĞLU ÖĞÜNÇ, AYLİZ; Atalay, Suleyman; Soylu, Belkis; Aykac, Asli; Ogunc, Ayliz Velioglu; Cetinel, Sule; Ozkan, Naziye; Erzik, Can; Sehirli, Ahmet OzerObjective: In the present study, it was aimed to study the antioxidant effects of spironolactone (SPL) to determine its possible protective effects in hepatic ischemia reperfusion injury. Material and Methods: Hepatic artery, portal vein, and bile duct of Wistar albino rats were clamped for 45 minutes under anesthesia to form an ischemia period. Then reperfusion was allowed and the rats were decapitated 60 minutes later. SPL (20 mg/kg, p.o.) or SF was orally administered for 30 minutes before ischemia. Rats in the control arm underwent sham surgery and were administered isotonic saline. Liver function was studied by measuring aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-alpha (TNF-alpha), and interleukin 1beta (IL-1 beta) levels. Malondialdehyde (MDA), glutathione (GSH), luminol, and lucigenin levels, myeloperoxidase (MPO) and Na+-K+- ATPase enzyme activities were analyzed to study tissue injury under light microscope. Results: While IR increased AST, ALT, TNF-alpha, and IL-1 beta levels and MDA, luminol, and lusigenin levels and MPO activities, it caused a decrease in GSH levels and Na+K+-ATPase activity. Spironolactone administration significantly improved these values. Conclusion: Protective effects of SPL against ischemia/reperfusion injury via various mechanisms suggest that this agent may become a novel treatment agent in clinical practice.Publication Metadata only Meloxicam Exerts Neuroprotection on Spinal Cord Trauma in Rats(INFORMA HEALTHCARE, 2011) VELİOĞLU ÖĞÜNÇ, AYLİZ; Hakan, Tayfun; Toklu, Hale Zerrin; Biber, Necat; Celik, Hasan; Erzik, Can; Ogunc, Ayliz Velioglu; Cetinel, Sule; Sener, GokselTraumatic injury to the central nervous system results in the delayed dysfunction and neuronal death. Impaired mitochondrial function, generation of reactive oxygen species (ROS), and lipid peroxidation occur soon after traumatic spinal cord injury (SCI), while the activation of compensatory molecules that neutralize ROS occurs at later time points. The aim of the current study was to investigate the putative neuroprotective effect of the COX2 inhibitor meloxicam in a rat model of SCI. In order to induce SCI, a standard weight-drop method that induced a moderately severe injury (100 g/cm force) at T10, was used. Injured animals were given either 2 mg/kg meloxicam or saline 30 min postinjury by intraperitoneal injection. At seven days postinjury, neurological examination was performed and rats were decapitated. Spinal cord samples were taken for histological examination or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and DNA fragmentation. Formation of ROS in spinal cord tissue samples was monitored by using a chemiluminescence (CL) technique. SCI caused a significant decrease in spinal cord GSH content, which was accompanied with significant increases in CL, MDA levels, MPO activity, and DNA damage. On the other hand, meloxicam treatment reversed all these biochemical parameters as well as SCI-induced histopathological alterations. Furthermore, impairment of the neurological functions due to SCI was improved by meloxicam treatment. The present study suggests that meloxicam, reduces SCI-induced oxidative stress and exerts neuroprotection by inhibiting lipid peroxidation, GSH depletion, and DNA fragmentation.