Person:
ERZİK, CAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ERZİK

First Name

CAN

Name

Search Results

Now showing 1 - 10 of 15
  • PublicationOpen Access
    Propylthiouracil-induced hypothyroidism protects ionizing radiation-induced multiple organ damage in rats
    (BIOSCIENTIFICA LTD, 2006-05) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G.; Kabasakal, L.; Atasoy, B. M.; Erzik, C.; Velioglu-Ogunc, A.; Cetinel, S.; Contuk, G.; Gedik, N.; Yegen, B. C.
    The objective of this study was to examine the potential radioprotective properties of propylthiouracil (PTU)-induced hypothyroidism against oxidative organ damage induced by irradiation. Sprague-Dawley rats were pre-treated with saline or PTU (10 mg/kg i.p.) for 15 days, and were then exposed to whole-body irradiation (800 cGy). A group of rats were decapitated at 6 h after exposure to irradiation, while another group was followed for 72 h after irradiation, during which saline or PTU injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde (MDA; an index of lipid peroxidation) and glutathione (GSH, an antioxidant) levels, myeloperoxidase activity (MPO; an index of tissue neutrophil accumulation) and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH), an indicator of tissue damage, and turnout necrosis factor-alpha (TNF alpha) were assayed in serum samples. Irradiation caused a significant decrease in GSH level, which was accompanied by significant increases in MDA levels, MPO activity, CL levels and collagen content of the tissues studied (P < 0.05-0.001). Similarly, serum TNFa and LDH were elevated in the irradiated rats as compared with the control group. On the other hand, PTU treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. Our results suggested that PTU-induced hypothyroidism reduces oxidative damage in the lung, hepatic, renal and ileal tissues probably due to hypometabolism, which is associated with decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms.
  • Publication
    Oxytocin ameliorates skin damage and oxidant gastric injury in rats with thermal trauma
    (ELSEVIER SCI LTD, 2008) YEGEN, BERRAK; Iseri, Sevgin Oezlem; Gedik, Ismail Ertugrul; Erzik, Can; Uslu, Bahar; Arbak, Serap; Gedik, Nursal; Yegen, Berrak C.
    Transient splanchnic vasoconstriction following major burns causes oxidative and/or nitrosative damage in gastrointestinal tissues due to ischemia, which is followed by reperfusion injury. Oxytocin (OT), a hypothalamic nonapeptide, possesses antisecretory and antiulcer effects, facilitates wound healing and is involved in immune and inflammatory processes. To assess the possible protective effect of oxytocin (OT) against burn-induced gastric injury, Sprague-Dawley rats (250-300 g) were randomly divided into three groups as control (n = 8), OT-treated burn (n = 8) and saline-treated burn (n = 8) groups. Under anesthesia, the shaved dorsal skin of rats was exposed to 90 degrees C water for 10 s to induce burn injury covering 30% of total body surface area in a standardized manner. Either oxytocin (5 mu g/kg) or saline was administered subcutaneously immediately after and at 24 h following burn, and the rats were decapitated at 48 h. Serum samples were assayed for TNF-alpha, and stomach was taken for the determination of malondialdehyde (MDA), myeloperoxidase (MPO) activity, DNA fragmentation rate (%) and histopathological examination. MDA and MPO were assayed for products of lipid peroxidation and as an index of tissue neutrophil infiltration, respectively. When compared to control group, burn caused significant increases in gastric MDA and MPO activity and increased microscopic damage scores at 48 h (p < 0.001). Oxytocin treatment reversed the burn-induced elevations in MDA and MPO levels and reduced the gastric damage scores (p < 0.001, p < 0.01), while TNF-alpha levels, which were increased significantly at 48th h after injury (p < 0.001), were abolished with OT treatment (p < 0.001). The results of this study suggest that oxytocin may provide a therapeutic benefit in diminishing burn-induced gastric inflammation by depressing tissue neutrophil infiltration and decreasing the release of inflammatory cytokines, but requires further investigation as a potential therapeutic agent in ameliorating the systemic effects of severe burn. (C) 2007 Elsevier Ltd and ISBI. All rights reserved.
  • Publication
    Resveratrol protects against irradiation-induced hepatic and ileal damage via its anti-oxidative activity
    (TAYLOR & FRANCIS LTD, 2009) VELİOĞLU ÖĞÜNÇ, AYLİZ; Velioglu-Ogunc, Ayliz; Sehirli, Ozer; Toklu, Hale Z.; Ozyurt, Hazan; Mayadagli, Alpaslan; Eksioglu-Demiralp, Emel; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, Goeksel
    The present study was undertaken to determine whether resveratrol (RVT) could ameliorate ionizing radiation-induced oxidative injury. After a 10-days pre-treatment with RVT (10 mg/kg/day p.o.), rats were exposed to whole-body IR (800 cGy) and the RVT treatment was continued for 10 more days after the irradiation. Irradiation caused a significant decrease in glutathione level, while malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the liver and ileum tissues. Similarly, plasma lactate dehydrogenase and pro-inflammatory cytokine levels, 8-hydroxy-2'-deoxyguanosine and leukocyte apoptosis were elevated, while antioxidant-capacity was reduced in the irradiated rats as compared with the control group. Furthermore, Na-1, K-1 -ATPase activity was inhibited and DNA fragmentation was increased in the ileal tissues. Resveratrol treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. In conclusion, supplementing cancer patients with adjuvant therapy of resveratrol may have some benefit for a more successful radiotherapy.
  • Publication
    Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines
    (ELSEVIER SCIENCE INC, 2008) YEGEN, BERRAK; Sehirli, Oezer; Sener, Emre; Sener, Goeksel; Cetinel, Sule; Erzik, Can; Yegen, Berrak C.
    Mechanisms of burn-induced skin and remote organ injury involve oxidant generation and the release of pro-inflammatory cytokines. In this study the possible antioxidant and anti-inflammatory effects of ghrelin were evaluated in a rat model of thermal trauma. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. Ghrelin, was administered subcutaneously (10 ng/kg/day) after the burn injury and repeated twice daily. Rats were decapitated at 6 h and 48 h after burn injury and blood was collected for the analysis of pro-inflammatory cytokines (TNF-alpha and IL-1 beta), lactate dehydrogenase (LDH) activity and antioxidant capacity (AOC). In skin, lung and stomach tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+-ATPase activity were measured in addition to the histological analysis. DNA fragmentation ratio in the gastric mucosa was also evaluated. Burn injury caused significant increase in both cytokine levels, and LDH activity, while plasma ACC was found to be depleted after thermal trauma. On the other hand, in tissue samples the raised MDA levels, MPO activity and reduced GSH levels, Na+-K+-ATPase activity due to burn injury were found at control levels in ghrelin-treated groups, while DNA fragmentation in the gastric tissue was also reduced. According to the findings of the present study, ghrelin possesses a neutrophil-dependent anti-inflammatory effect that prevents burn-induced damage in skin and remote organs and protects against oxidative organ damage. (C) 2008 Elsevier Inc. All rights reserved.
  • Publication
    Alpha-Lipoic Acid Improves Acetic Acid-Induced Gastric Ulcer Healing in Rats
    (SPRINGER/PLENUM PUBLISHERS, 2009) YEGEN, BERRAK; Karakoyun, Berna; Yuksel, Meral; Ercan, Feriha; Erzik, Can; Yegen, Berrak C.
    To evaluate the role of ALA treatment on the healing of acetic acid-induced gastric ulcer, rats were given ALA (35 mg/kg/day) or saline for 3 days before the induction of ulcer and the treatment was continued twice daily for 2 days (early) or 10 days (late) until they were decapitated. Gastric ulcer index, microscopic score, elevated DNA fragmentation and chemiluminescence levels of the saline-treated ulcer groups were all reduced by ALA treatment. Likewise, ALA treatment inhibited chemiluminescence levels in both early and late ulcer groups. Marked reduction in glutathione levels of the saline-treated early ulcer group was reversed by ALA treatment, while ALA treatment was effective in depressing gastric myeloperoxidase activity in the late ulcer group. In conclusion, ALA treatment shows protective role in the healing of acetic acid-induced gastric injury in rats via the suppression of neutrophil accumulation, preservation of endogenous glutathione, inhibition of reactive oxidant generation and apoptosis.
  • Publication
    The Anti-Inflammatory and Neuroprotective Effects of Ghrelin in Subarachnoid Hemorrhage-Induced Oxidative Brain Damage in Rats
    (MARY ANN LIEBERT, INC, 2010) VELİOĞLU ÖĞÜNÇ, AYLİZ; Ersahin, Mehmet; Toklu, Hale Z.; Erzik, Can; Cetinel, Sule; Akakin, Dilek; Velioglu-Ogunc, Ayliz; Tetik, Sermin; Ozdemir, Zarife N.; Sener, Goeksel; Yegen, Berrak C.
    To elucidate the putative neuroprotective effects of ghrelin in subarachnoid hemorrhage (SAH)- induced brain injury, Wistar albino rats (n=54) were divided into sham-operated control, saline-treated SAH, and ghrelin-treated (10 mu g/kg/d IP) SAH groups. The rats were injected with blood (0.3mL) into the cisterna magna to induce SAH, and were sacrificed 48 h after the neurological examination scores were recorded. In plasma samples, neuron-specific enolase (NSE), S-100 beta protein, TNF-alpha, and IL-1 beta levels were evaluated, while forebrain tissue samples were taken for the measurement of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species levels, myeloperoxidase (MPO), Na+-K+-ATPase activity, and DNA fragmentation ratio. Brain tissue samples containing the basilar arteries were obtained for histological examination, while cerebrum and cerebellum were removed for the measurement of blood-brain barrier (BBB) permeability and brain water content. The neurological scores were impaired at 48 h after SAH induction, and SAH caused significant decreases in brain GSH content and Na+-K+-ATPase activity, and increases in chemiluminescence, MDA levels, and MPO activity. Compared with the control group, the protein levels of NSE, S-100 beta, TNF-alpha, and IL-1 beta in plasma were also increased, while ghrelin treatment prevented all SAH-induced alterations observed both biochemically and histopathologically. The results demonstrate that ghrelin alleviates SAH-induced oxidative brain damage, and exerts neuroprotection by maintaining a balance in oxidant-antioxidant status, by inhibiting proinflammatory mediators, and preventing the depletion of endogenous antioxidants evoked by SAH.
  • Publication
    Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats
    (KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, Goksel
    Background/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.
  • Publication
    Alpha Lipoic Acid Alleviates Oxidative Stress and Preserves Blood Brain Permeability in Rats with Subarachnoid Hemorrhage
    (SPRINGER/PLENUM PUBLISHERS, 2010) YEGEN, BERRAK; Ersahin, Mehmet; Toklu, Hale Z.; Cetinel, Sule; Yuksel, Meral; Erzik, Can; Berkman, M. Zafer; Yegen, Berrak C.; Sener, Goeksel
    The neuroprotective effect of alpha lipoic acid (ALA; 100 mg/kg, po), a dithiol antioxidant, on experimentally induced subarachnoid hemorrhage (SAH) was assessed in Wistar albino rats. Neurological examination scores recorded at the 48th h of SAH induction were increased in SAH groups, which were accompanied with significant increases in the formation of reactive oxygen species, DNA fragmentation ratios, malondialdehyde levels and myeloperoxidase activity, while significant decreases in the brain glutathione content and Na+, K+-ATPase activity were observed. On the other hand, ALA treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations. Increased brain edema, impaired blood-brain-barrier permeability and neurological scores were also improved by ALA treatment. The results demonstrate that ALA exerts neuroprotective effects via the enhancement of endogenous antioxidant enzyme activity, the inhibition of neutrophil accumulation and free radical generation, suggesting a therapeutic potential in reducing secondary injury after SAH in patients.
  • PublicationOpen Access
    Rethinking large group lectures – how far in this format
    (2022-05-01) SEVİM, MUSTAFA; ERZİK, CAN; YEGEN, BERRAK; GÜLPINAR, MEHMET ALİ; AKTURAN S., SEVİM M., ERZİK C., YEGEN B., GÜLPINAR M. A.
    Objective: The aim of this study is to determine the perceptions, attitudes, and behaviour of medical students and lecturers regarding the lectures and their effects on students’ learning behaviour. Materials and Methods: This was a qualitative study including multi-methods. Researchers observed lecture ambiance and activities in two courses. Lectures were observed and slide-presentations were evaluated. Additionally, in-depth and focus group interviews were conducted. Results: Two researchers attended and observed 75 lectures. The average number of attendees was 51.21. Eighty percent of lecturers did not introduce any activities to attract attention and prepare students for the lecture. Only 12% of lectures were taught interactively. Of the evaluated 43 (69.80%) slide-presentations, sufficient association or integration was not made between clinical and basic sciences. Conclusion: This study revealed that the lectures created negative feelings and thoughts in students and lecturers, and led to undesirable attitudes and behaviour. It is essential to focus on giving interactive lectures which aim at developing reasoning, decision-making, and evaluation competencies. The most significant factors determining students’ attendance and appraisal of the lectures were related to the preparation of the lecturers, the intensity of the content, integration between basic science and clinical science, and the presentation skills.
  • Publication
    Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats
    (ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G; Kabasakal, L; Atasoy, BM; Erzik, C; Velioglu-Ogunc, A; Cetinel, U; Gedik, N; Yegen, BC
    The present study was designed to determine the possible protective effects of Ginkgo biloba extract (EGb) against oxidative organ damage induced by irradiation (IR). Sprague-Dawley rats were exposed to whole-body IR (800cGy) after a 15-day pretreatment with either saline or EGb (50 mg/kg/day), intraperitoneally, and treatments were repeated immediately after the IR. Then the rats were decapitated at either 6 h or 72 It after IR, where EGb or saline injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde, glutathione levels, myeloperoxidase activity and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH)-an indicator of tissue damage and TNF-alpha were assayed in serum samples. In the saline-treated irradiation groups, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the tissues (p < 0.01-0.001), which were in parallel with the increases in luminol and lucigenin CL values. In the EGb treated-IR groups, all of these oxidant responses were prevented significantly (p < 0.05-0.01). LDH and TNF-alpha levels, which were increased significantly (p < 0.01-0.001) following IR, were decreased (p < 0.05-0.001) with EGb treatment. In conclusion, the present data demonstrate that EGb, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that EGb may have a potential benefit in enhancing the success of radiotherapy. (c) 2005 Elsevier Ltd. All rights reserved.