Person: ASLANKARAYİĞİT UĞURLU, EMEL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ASLANKARAYİĞİT UĞURLU
First Name
EMEL
Name
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Second and Secondary Lattice Modules(2014) ASLANKARAYİĞİT UĞURLU, EMEL; Çallıalp, Fethi; Tekir, Ünsal; Uğurlu, Emel Aslankarayiğit; Oral, Kürşat HakanLet M be a lattice module over the multiplicative lattice L . A nonzero L -lattice module M is called second if for each a ∈ L , a 1 M = 1 M or a 1 M = 0 M . A nonzero L- lattice module M is called secondary if for each a ∈ L , a 1 M = 1 M or a n 1 M = 0 M for some n > 0 . Our objective is to investigative properties of second and secondary lattice modules.Publication Open Access Prime, weakly prime and almost prime elements in multiplication lattice modules(SCIENDO, 2016-01-01) ASLANKARAYİĞİT UĞURLU, EMEL; Ugurlu, Emel Aslankarayigit; Callialp, Fethi; Tekir, UnsalIn this paper, we study multiplication lattice modules. We establish a new multiplication over elements of a multiplication lattice module. With this multiplication, we characterize idempotent element, prime element, weakly prime element and almost prime element in multiplication lattice modules.Publication Open Access On quası n-ideals of commutative rings(2022-12-01) ASLANKARAYİĞİT UĞURLU, EMEL; Anebri A., Mahdou N., ASLANKARAYİĞİT UĞURLU E.Let R be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of n-ideals and the class of (2, n)-ideals. A proper ideal I of R is said to be a quasi n-ideal if root I is an n-ideal of R. Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the n-ideals, the quasi primary ideals, the (2, n)-ideals and the pr-ideals. Moreover, we use the quasi n-ideals to characterize some kind of rings. Finally, we investigate quasi n-ideals under various contexts of constructions such as direct product, power series, idealization, and amalgamation of a ring along an ideal.Publication Open Access Pure Elements and Dual Notions of Prime Elements in Lattice Modules(2020-04-20) ASLANKARAYİĞİT UĞURLU, EMEL; Emel ASLANKARA YİĞİT UĞURLUThis paper deals with the pure elements and the dual notions of prime elements(that is, second elements). For this, it introduces the definitions of second element andcoprime element. Then it is shown that the concepts of the second element and coprimeelement are equivalent. Moreover, this study gives us a characterization of comultiplicationmodules. Finally, it defines pure elements and obtains the relation among pure, idempotentand multiplication elements.Publication Open Access Generalizations of r-ideals of commutative rings(TAYLOR & FRANCIS LTD, 2021-11-17) ASLANKARAYİĞİT UĞURLU, EMEL; Ugurlu, Emel AslankarayigitIn this study, we present generalizations of the concept of r-ideals in commutative rings with a nonzero identity. Let R be a commutative ring with 0 not equal 1 and L(R) be the lattice of all ideals of R. Suppose that phi:L(R) -> L(R) boolean OR {circle divide} is a function. A proper ideal I of R is called a phi-r-ideal of R if whenever ab is an element of I and Ann(a) = (0) imply that b is an element of I for each a,b is an element of R. In addition to proven many properties of phi-r-ideals, we also examine the concept of phi-r-ideals in a trivial ring extension and use them to characterize total quotient rings.Publication Open Access S-principal ideal multiplication modules(2023-01-01) ASLANKARAYİĞİT UĞURLU, EMEL; TEKİR, ÜNSAL; Aslankarayiğit Uğurlu E., Koç S., Tekir Ü.In this paper, we studyS-Principal ideal multiplication modules. LetA \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">A A be a commutative ring with1≠0, S⊆A\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">1≠0, S⊆A1≠0, S⊆Aa multiplicatively closed set andM \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M anA-module. A submoduleNofMis said to be anS-multipleofMif there exists∈S\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">s∈Ss∈Sand a principal idealIofAsuch thatsN⊆IM⊆N\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">sN⊆IM⊆NsN⊆IM⊆N.M \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M is said to be anS-principal ideal multiplication moduleif every submoduleN \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">N N ofM \" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">M M is anS-multiple ofM. Various examples and properties ofS-principal ideal multiplication modules are given. We investigate the conditions under which the trivial extensionA⋉M\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">A⋉MA⋉Mis anS⋉0\" role=\"presentation\" style=\"display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;\">S⋉0S⋉0-principal ideal ring. Also, we prove Cohen type theorem forS-principal ideal multiplication modules in terms ofS-prime submodules.