Person: OGAN, AYŞE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
OGAN
First Name
AYŞE
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery(SPRINGER JAPAN KK, 2015) OGAN, AYŞE; Danis, Ozkan; Ogan, Ayse; Tatlican, Pinar; Attar, Azade; Cakmakci, Emrah; Mertoglu, Bulent; Birbir, MeralHalophilic archaea offer a potential source for production of polyhydroxyalkanoates (PHAs). Hence, the experiments were carried out with five extremely halophilic archaeal isolates to determine the highest PHA-producing strain. PHA production of each isolates was separately examined in cheap carbon sources such as corn starch, sucrose, whey, apple, melon and tomato wastes. Corn starch was found to be a fairly effective substrate for PHA production. Among the strains studied here, the strain with the highest capability for PHA biosynthesis was found to be 1KYS1. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that 1KYS1 closely related to species of the genus Natrinema. The closest phylogenetic similarity was with the strain of Natrinema pallidum JCM 8980 (99 %). PHA content of 1KYS1 was about 53.14 % of the cell dry weight when starch was used as a carbon source. The formation of large and uniform PHA granules was confirmed by transmission electron microscopy and the biopolymer was identified as poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV). PHBV produced by 1KYS1 was blended with low molar mass polyethylene glycol (PEG 300) to prepare biocompatible films for drug delivery. Rifampicin was used as a model drug and its release from PHBV films was investigated at pH 7.4, 37 A degrees C. It was found that PHBV films obtained from 1KYS1 were very effective for drug delivery. In conclusion, PHBV of 1KYS1 may have a potential usage in drug delivery applications.Publication Metadata only The potential of archaeosomes as carriers of pDNA into mammalian cells(TAYLOR & FRANCIS LTD, 2016) OGAN, AYŞE; Attar, Azade; Ogan, Ayse; Yucel, Sevil; Turan, KadirThis paper describes the formulation of archaeosomes and the evaluation of their abilities to facilitate in vitro DNA delivery. Lipids of the H.hispanica 2TK2 strain were used in archaeosome formation, which is formulated by mixing H.hispanica 2TK2 lipids with plasmid DNA encoding green fluorescent protein (GFP) or beta-galactosidase (beta-gal). Archaeosome/pDNA formation and unbound DNA were monitored by agarose gel electrophoresis. The archaeosome formulations were visualized by AFM and TEM. The zeta potential analysis showed the archaeosomes to be electronegative. The composition of archaeosomes and the DNA dose for transient transfection into HEK293 cells were optimized, and the relationship between the structure and activity of archaeosomes in DNA delivery was investigated. By themselves, archaeosomes showed low efficiency for DNA delivery, due to their anionic nature. By formulating archaeosomes with a helper molecule, such as DOTAP, CaCl2, or LiCl, the capability of archaeosomes for gene transfection is significantly enhanced. The transfection profiles of efficient archaeosomes are proved to have a long shelf-life when maintained at room temperature. Thus, the archaeal lipids have the potential to be used as transfection reagents in vitro.