Person: ÜNAL YILDIRIM, SEMRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÜNAL YILDIRIM
First Name
SEMRA
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Design and characterization of polycaprolactone-gelatin-graphene oxide scaffolds for drug influence on glioblastoma cells(PERGAMON-ELSEVIER SCIENCE LTD, 2019) ATASOY, BESTE MELEK; Unal, Semra; Arslan, Sema; Gokce, Tilbe; Atasoy, Beste Melek; Karademir, Betul; Oktar, Faik Nuzhet; Gunduz, OguzhanThree-dimensional (3D) scaffolds that mimic in vivo tumor microenvironments can be used to study tumor response to anticancer treatments, since most preclinical combination treatment strategy for anti-glioma were evaluated with traditional 2D cell culture. In this research, the nanofiber scaffolds of polycaprolactone (PCL) containing gelatin (Gel) nano/microparticles coated with different concentrations of graphene oxide (GO) and were successfully produced by combining electrospinning and electrospraying techniques. Scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) spectroscopy and mechanical testing were used to characterize the structure and properties of the composites. The results show that gelatin and graphene particles can be well dispersed in the polycaprolactone nanofiber matrix by using the combination technique of electrospinning and electrospraying. The presence of 1 wt% graphene oxide increased mechanical strength of PCL/Gel scaffold and was found to be well consistent with the drug treatments (temozolomide and bortezomib) and radiotherapy by not showing additional toxicity.Publication Metadata only Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles(ELSEVIER SCIENCE BV, 2018) OKTAR, FAİK NÜZHET; Unal, Semra; Oktar, Faik Nuzhet; Gunduz, OguzhanThe investigation of unique sizes and shapes as they relate to various properties has become a great study for large field applications. Polymethylsilsesquioxane (PMSQ) particles are produced by electrospraying. Morphology of the electrosprayed particles develops from the needle-like to star-like particles by controlling the concentration of the polymer solution. Therefore, electrospraying process instead of conventional methods has opened up an alternative for the fabrication of particles by controlling with three main parameters (applied voltage, flow rate and concentration of the polymer) that are used to manipulate their morphologies during preparation. (C) 2018 Elsevier B.V. All rights reserved.Publication Metadata only Production and characterization of calcium phosphates from marine structures: The fundamentals basics(Springer, 2019-01-01) ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; OKTAR, FAİK NÜZHET; ÜNAL S., GÜNDÜZ O., AKYOL S., Ben Nissan B., OKTAR F. N.Publication Metadata only Synthesis, characterization, and biological properties of composites of hydroxyapatite and hexagonal boron nitride(WILEY, 2018) OKTAR, FAİK NÜZHET; Unal, Semra; Ekren, Nazmi; Sengil, Ahmet Z.; Oktar, Faik N.; Irmak, Ster; Oral, Ozlem; Sahin, Yesim M.; Kilic, Osman; Agathopoulos, Simeon; Gunduz, OguzhanHydroxyapatite (HA), obtained from bovine bones, was successfully reinforced with hexagonal boron nitrite (h-BN). h-BN/HA composites, with BN content up to 1.5 wt %, were sintered at various temperatures between 1000 and 1300 degrees C, in air. Well-sintered samples were obtained after sintering at 1200 and 1300 degrees C. The presence of h-BN contributed to dense, fine, and well-crystallized microstructure. The results of X-ray diffraction analysis and FT-IR spectroscopy showed that the produced composites comprised biphasic beta-TCP/HCA (HCA: carbonate partially substituted HA). High values of mechanical properties were achieved, namely compression strength 155 MPa for the sample 0.5% h-BN/HA and Vickers microhardness of 716 HV for the samples 1.5% h-BN/HA, both sintered at 1300 degrees C. U2OS human bone osteosarcoma proliferation and cell viability showed no adverse effect in the presence of h-BN/HA, suggesting the potential use of the produced materials as safe biomaterials in bone tissue engineering. (C) 2017 Wiley Periodicals, Inc.