Person:
ÜNAL YILDIRIM, SEMRA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÜNAL YILDIRIM

First Name

SEMRA

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Synthesis and characterization of interpenetrating network (IPN) based levan-polyacrylamide hydrogels and their application in conservation of cultural heritage
    (2023-11-01) ÜNAL YILDIRIM, SEMRA; OKTAR, FAİK NÜZHET; GENÇ, SEVAL; TOKSOY ÖNER, EBRU; Özen Sağlam R., Ünal Yıldırım S., Oktar F. N., Genç S., Erdem G., Toksoy Öner E.
    In this study, an IPN based enzymatic levan-polyacrylamide hydrogel (EL-PA) was developed and characterized for its structural, morphological, rheological properties and swelling kinetics to underline hydrogel properties and its potential use in paper conservation. The addition of levan also led to changes in the viscoelastic behavior of the hydrogels, with the complex viscosity of EL-PA samples showing pronounced dependence on shear rate. The swelling and the overall surface area of the hydrogels were increased with the addition of levan into the polymer network. Source associated structural differences were found to be negligible such that both microbially produced linear and enzymatically produced branched forms of levan performed equally well. Solvent loaded hydrogels were then applied on an artifact, a 19th century book of Namık Kemal, and investigated using FTIR, SEM, XRD and colorimetric analysis. Old adhesive layers were successfully removed, and hydrogels showed good compatibility and ease of application. This study has shown that levan has improved hydrogel properties and levan based systems bear high potential in conservation science.
  • PublicationOpen Access
    Marine-derived bioceramics for orthopedic, reconstructive and dental surgery applications
    (2022-11-01) OKTAR, FAİK NÜZHET; ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; EKREN, NAZMİ; ALTAN, ERAY; OKTAR F. N. , Unal S., GÜNDÜZ O., Ben Nissan B., Macha I. J. , Akyol S., Duta L., EKREN N., ALTAN E., YETMEZ M.
    Bioceramics are a fast-growing materials group, which are widely used in orthopedics, maxillofacial, dental, and reconstructive surgeries. They are produced using raw materials either from synthetic or natural sources. As naturally originated resources, the bones of sheep and cows are used after converting to calcium phosphates. Human-originated sources in the past were obtained from human cadaver bones, however now-a-days this has been discontinued. On the other hand, the \"golden standard\" in the reconstruction surgery has been using patients own bones, -i.e., autogenous bones, which heal better than other alternatives. Besides natural products, synthetic materials are produced from a range of inorganic raw and natural materials based on marine sources, such as corals, and other marine-derived materials (i.e., seashells, nacre). These are used to produce bioceramics and hence implants, devices, and bone grafts. Although during the last four decades a number of excellent books and book chapters have been published, no comprehensive review has been yet reported to cover the available marine materials and to indicate the related work and corresponding references to allow for both medical and ceramic scientists to access directly and open new avenues for further research on marine structures and their applications in orthopedic, maxillofacial, and reconstructive surgery areas. Hence, this review covers the general marine structures, their locations and availability in different countries and, current research on production methods of these unique structures that are difficult to fabricate synthetically. The authors are confident that this comprehensive review will be an excellent source not only for the ceramists, but also for the medical scientists.
  • PublicationOpen Access
    Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix
    (MDPI, 2020-06-11) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Oktar, Faik Nuzhet; Ficai, Denisa; Ficai, Anton; Gunduz, Oguzhan
    Glioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.
  • PublicationOpen Access
    3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering
    (MDPI, 2020-08-29) ŞAHİN, ALİ; Cakmak, Abdullah M.; Unal, Semra; Sahin, Ali; Oktar, Faik N.; Sengor, Mustafa; Ekren, Nazmi; Gunduz, Oguzhan; Kalaskar, Deepak M.
    Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (similar to 300 mu m) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.