Person: ÜNAL YILDIRIM, SEMRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÜNAL YILDIRIM
First Name
SEMRA
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells(2022-02-01) PINAR, ERTUĞRUL; ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; HARMAN, FERHAT; Pınar E., Şahin A., Ünal Yıldırım S., Gündüz O., Harman F., Kaptanoğlu E.Stem cell destiny can be controlled with scaffold biomaterials in tissue engineering and regenerative medicine. This study aimed to investigate the neuronal differentiation potential of human adipose tissue-derived mesen- chymal stem cells in graphene nanofiber matrix in vitro. Stem cell isolation was performed from adipose tissue taken from human by mechanical and enzymatic methods. The differentiation potential was examined after incubation of adipose stem cells in normal medium and neural differentiation medium, on graphene oxide (GO) and polycaprolactone (PCL) composite scaffolds produced by electrospinning technique. In vitro studies indi- cated that the presence of GO in PCL scaffold increases an effect on cell attachment, proliferation, infiltration into the scaffold, and neuronal differentiation. Also, unlike subcutaneous tissue, it has been shown immunohis- tochemically that mesenchymal stem cells derived from epidural adipose tissue tend to differentiate into oligodendrocytes.Publication Open Access Synthesis and characterization of interpenetrating network (IPN) based levan-polyacrylamide hydrogels and their application in conservation of cultural heritage(2023-11-01) ÜNAL YILDIRIM, SEMRA; OKTAR, FAİK NÜZHET; GENÇ, SEVAL; TOKSOY ÖNER, EBRU; Özen Sağlam R., Ünal Yıldırım S., Oktar F. N., Genç S., Erdem G., Toksoy Öner E.In this study, an IPN based enzymatic levan-polyacrylamide hydrogel (EL-PA) was developed and characterized for its structural, morphological, rheological properties and swelling kinetics to underline hydrogel properties and its potential use in paper conservation. The addition of levan also led to changes in the viscoelastic behavior of the hydrogels, with the complex viscosity of EL-PA samples showing pronounced dependence on shear rate. The swelling and the overall surface area of the hydrogels were increased with the addition of levan into the polymer network. Source associated structural differences were found to be negligible such that both microbially produced linear and enzymatically produced branched forms of levan performed equally well. Solvent loaded hydrogels were then applied on an artifact, a 19th century book of Namık Kemal, and investigated using FTIR, SEM, XRD and colorimetric analysis. Old adhesive layers were successfully removed, and hydrogels showed good compatibility and ease of application. This study has shown that levan has improved hydrogel properties and levan based systems bear high potential in conservation science.Publication Open Access Marine-derived bioceramics for orthopedic, reconstructive and dental surgery applications(2022-11-01) OKTAR, FAİK NÜZHET; ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; EKREN, NAZMİ; ALTAN, ERAY; OKTAR F. N. , Unal S., GÜNDÜZ O., Ben Nissan B., Macha I. J. , Akyol S., Duta L., EKREN N., ALTAN E., YETMEZ M.Bioceramics are a fast-growing materials group, which are widely used in orthopedics, maxillofacial, dental, and reconstructive surgeries. They are produced using raw materials either from synthetic or natural sources. As naturally originated resources, the bones of sheep and cows are used after converting to calcium phosphates. Human-originated sources in the past were obtained from human cadaver bones, however now-a-days this has been discontinued. On the other hand, the \"golden standard\" in the reconstruction surgery has been using patients own bones, -i.e., autogenous bones, which heal better than other alternatives. Besides natural products, synthetic materials are produced from a range of inorganic raw and natural materials based on marine sources, such as corals, and other marine-derived materials (i.e., seashells, nacre). These are used to produce bioceramics and hence implants, devices, and bone grafts. Although during the last four decades a number of excellent books and book chapters have been published, no comprehensive review has been yet reported to cover the available marine materials and to indicate the related work and corresponding references to allow for both medical and ceramic scientists to access directly and open new avenues for further research on marine structures and their applications in orthopedic, maxillofacial, and reconstructive surgery areas. Hence, this review covers the general marine structures, their locations and availability in different countries and, current research on production methods of these unique structures that are difficult to fabricate synthetically. The authors are confident that this comprehensive review will be an excellent source not only for the ceramists, but also for the medical scientists.Publication Open Access Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix(MDPI, 2020-06-11) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Oktar, Faik Nuzhet; Ficai, Denisa; Ficai, Anton; Gunduz, OguzhanGlioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.Publication Open Access 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering(ELSEVIER SCI LTD, 2020-11) ŞENGÖR, MUSTAFA; Aki, Deniz; Ulag, Songul; Unal, Semra; Sengor, Mustafa; Ekren, Nazmi; Lin, Chi-Chang; Yilmazer, Hakan; Ustundag, Cem Bulent; Kalaskar, Deepak M.; Gunduz, OguzhanIn this study, a novel Polyvinyl Alcohol (PVA)/Hexagonal Boron Nitride (hBN)/Bacterial Cellulose (BC) composite, bone tissue scaffolds were fabricated using 3D printing technology. The printed scaffolds were characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), tensile testing, swelling behaviour, differential scanning calorimetry (DSC), and in vitro cell culture assay. Results demonstrated that bacterial cellulose addition affected the characteristic properties of the blends. Morphological studies revealed the homogenous dispersion of the bacterial cellulose within the 12 wt%PVA/0.25 wt%hBN matrix. Tensile strength of the scaffolds was decreased with the incorporation of BC and 12 wt%PVA/0.25 wt%hBN/0.5 wt%BC had the highest elongation at break value (93%). A significant increase in human osteoblast cell viability on 3D scaffolds was observed for 12 wt%PVA/0.25 wt%hBN/0.5 wt%BC. Cell morphology on composite scaffolds showed that bacterial cellulose doped scaffolds appeared to adhere to the cells. The present work deduced that bacterial cellulose doped 3D printed scaffolds with well-defined porous structures have considerable potential as a suitable tissue scaffold for bone tissue engineering (BTE). (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Publication Open Access 3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering(MDPI, 2020-08-29) ŞAHİN, ALİ; Cakmak, Abdullah M.; Unal, Semra; Sahin, Ali; Oktar, Faik N.; Sengor, Mustafa; Ekren, Nazmi; Gunduz, Oguzhan; Kalaskar, Deepak M.Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (similar to 300 mu m) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.Publication Open Access Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing(2022-04-01) ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; Oran D., Unal S., GÜNDÜZ O.Bacterial cellulose (BC) and quince seed mucilage are very promising biological materials. In this study, we reported the design and fabrication of a novel biocompatible scaffold with excellent fibroblast cell proliferation, making it a promising composite scaffold for wound dressings. The composite scaffold was fabricated by ex situ modification of bacterial cellulose by quince seed mucilage. The products were investigated to determine their morphological features, chemical features, and thermal and swelling behaviors. Cell culture and proliferation tests were performed to obtain information on biocompatibility of the scaffolds. This work indicates the novel scaffold provides great potential in wound dressing for clinical application.