Person:
ÖZDEMİR KUMRAL, ZARİFE NİGAR

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÖZDEMİR KUMRAL

First Name

ZARİFE NİGAR

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    Functional and structural changes of the urinary bladder following spinal cord injury; treatment with alpha lipoic acid
    (WILEY, 2017) VELİOĞLU ÖĞÜNÇ, AYLİZ; Ekiz, Arif; Ozdemir-Kumral, Zarife Nigar; Ersahin, Mehmet; Tugtepe, Halil; Ogunc, Ayliz Velioglu; Akakin, Dilek; Kiran, Demir; Ozsavci, Derya; Biber, Necat; Hakan, Tayfun; Yegen, Berrak C.; Sener, Goksel; Toklu, Hale Z.
    BACKGROUND & AIMAlpha lipoic acid (LA) was shown to exert neuroprotection in trauma-induced spinal cord injury (SCI), which is frequently associated with urinary bladder complaints in patients with SCI. Accordingly, the protective effects of LA on biochemical and histological changes in bladder as well as functional studies were assessed. METHODSWistar albino rats were divided as control, SCI, and LA (50mg/kg/day, ip) treated SCI groups (SCI+LA). The standard weight-drop (100g/cm force at T10) method was used to induce a moderately severe SCI. One week after the injury, neurological examination was performed and the rats were decapitated. Bladder samples were taken for histological examination, functional (isolated tissue bath) studies, and for the measurement of biochemical parameters (malondialdehyde, MDA; gluthathione, GSH; nerve growth factor, NGF; caspase-3, luminol and lucigenin chemiluminescences). RESULTSSCI caused a significant (P<0.001) increase in the detrusor muscle thickness. It increased the contractility responses to carbachol and relaxation responses to papaverine (P<0.05-0.001). There were also significant alterations in MDA, caspase-3, luminol, and lucigenin chemiluminescences with concomitant decreases in NGF and GSH (P<0.05). LA treatment reversed histological and functional (contraction and relaxation responses) changes induced by SCI (P<0.05-0.001), but no significant recovery was observed in the impaired neurological functions. CONCLUSIONThese results indicate that LA have a beneficial effect in improving the bladder tonus via its antioxidant and anti-inflammatory actions following SCI.
  • Publication
    The Anti-Inflammatory and Neuroprotective Effects of Ghrelin in Subarachnoid Hemorrhage-Induced Oxidative Brain Damage in Rats
    (MARY ANN LIEBERT, INC, 2010) VELİOĞLU ÖĞÜNÇ, AYLİZ; Ersahin, Mehmet; Toklu, Hale Z.; Erzik, Can; Cetinel, Sule; Akakin, Dilek; Velioglu-Ogunc, Ayliz; Tetik, Sermin; Ozdemir, Zarife N.; Sener, Goeksel; Yegen, Berrak C.
    To elucidate the putative neuroprotective effects of ghrelin in subarachnoid hemorrhage (SAH)- induced brain injury, Wistar albino rats (n=54) were divided into sham-operated control, saline-treated SAH, and ghrelin-treated (10 mu g/kg/d IP) SAH groups. The rats were injected with blood (0.3mL) into the cisterna magna to induce SAH, and were sacrificed 48 h after the neurological examination scores were recorded. In plasma samples, neuron-specific enolase (NSE), S-100 beta protein, TNF-alpha, and IL-1 beta levels were evaluated, while forebrain tissue samples were taken for the measurement of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species levels, myeloperoxidase (MPO), Na+-K+-ATPase activity, and DNA fragmentation ratio. Brain tissue samples containing the basilar arteries were obtained for histological examination, while cerebrum and cerebellum were removed for the measurement of blood-brain barrier (BBB) permeability and brain water content. The neurological scores were impaired at 48 h after SAH induction, and SAH caused significant decreases in brain GSH content and Na+-K+-ATPase activity, and increases in chemiluminescence, MDA levels, and MPO activity. Compared with the control group, the protein levels of NSE, S-100 beta, TNF-alpha, and IL-1 beta in plasma were also increased, while ghrelin treatment prevented all SAH-induced alterations observed both biochemically and histopathologically. The results demonstrate that ghrelin alleviates SAH-induced oxidative brain damage, and exerts neuroprotection by maintaining a balance in oxidant-antioxidant status, by inhibiting proinflammatory mediators, and preventing the depletion of endogenous antioxidants evoked by SAH.
  • Publication
    Intravesical hyaluronic acid treatment improves bacterial cystitis and reduces cystitis-induced hypercontractility in rats
    (WILEY, 2015) YEGEN, BERRAK; Yildiz, Nurdan; Alpay, Harika; Tugtepe, Halil; Kumral, Zarife Nigar Ozdemir; Akakin, Dilek; Ilki, Arzu; Sener, Goksel; Yegen, Berrak C.
    ObjectiveTo investigate the effect of intravesical hyaluronic acid on Escherichia coli-induced cystitis and cystitis-induced hypercontractility in rats. MethodsBacterial cystitis was induced in Wistar female rats by intravesical inoculation of E.coli. Isotonic saline was instilled in the control group (n=6). The rats were either non-treated, treated with gentamycin (4mg/kg, 5days) or treated intravesically with hyaluronic acid (0.5mL, 0.5%). On the eighth day, the bladder tissues were excised for histological examination, and the measurements of myeloperoxidase, superoxide dismutase and catalase activities. Contraction/relaxation responses to carbachol, isoprotrenol and papaverine were studied. ResultsTissue myeloperoxidase activity was increased, but superoxide dismutase and catalase activities were decreased in bacterial cystitis, while hyaluronic acid treatment reversed these changes. In the hyaluronic acid-treated group, healing of the uroepithelium was observed, while decreased inflammatory cell infiltration was obvious in gentamycin-treated group. E.coli-induced cystitis in all rats resulted in increased contraction responses to carbachol compared with controls (P<0.01). Treatment with hyaluronic acid, but not gentamycin, significantly (P<0.05) depressed hypercontractility at maximum carbachol concentrations. In all rats with cystitis, papaverine-induced relaxation was increased, whereas isoproterenol-induced relaxation curves were not different between the studied groups. ConclusionGentamycin treatment, despite its ameliorative effect on inflammation, had no impact on the contractile dysfunction of the injured bladder. Intravesical hyaluronic acid, in addition to its supportive role in the healing of the epithelium, seems to lower the increased threshold for contraction and to reduce oxidative stress. These findings support a potential role for hyaluronic acid in the treatment of bacterial cystitis.
  • Publication
    Protective effects of melatonin against spinal cord injury induced oxidative damage in rat kidney: A morphological and biochemical study
    (ELSEVIER GMBH, 2013) YEGEN, BERRAK; Akakin, Dilek; Kiran, Demir; Ozkan, Naziye; Ersahin, Mehmet; Ozdemir-Kumral, Zarife Nigar; Yegen, Berrak; Sener, Goksel
    Spinal cord injury (SCI) induced oxidative stress affects multiple organ systems including the kidney. We studied the possible protective effects of melatonin on SCI-induced oxidative damage in renal tissues of rats. Wistar albino rats (n =24) were exposed to SCI and divided into vehicle- or melatonin-treated SCI groups. Melatonin was administred intraperitoneally at a dose of 10 mg/kg for seven days. Renal tissues were investigated by light and electron microscopy. Furthermore, tissue malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) and superoxide dismutase (SOD) activities were also determined. In the vehicle-treated SCI group, the renal histology was disturbed compared to controls, whereas the melatonin-treated SCI group showed significantly reduced degeneration of renal tissue as seen by both light and electron microscopy. MDA levels, MPO and SOD activities were increased and GSH levels were decreased in the vehicle-treated SCI group compared to controls. On the other hand, decreased MDA levels and MPO activities and increased GSH levels were observed in the melatonin-treated SCI group compared to vehicle-treated SCI group. These results showed that experimentally induced SCI caused oxidative stress in the rat kidney, whereas melatonin treatment reduced oxidative stress, suggesting that it may be used as a complementary therapy of renal problems occurring following SCI. (C) 2013 Elsevier GmbH. All rights reserved.