Person:
OKTAR, FAİK NÜZHET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

OKTAR

First Name

FAİK NÜZHET

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite
    (SPRINGER, 2018) OKTAR, FAİK NÜZHET; Aydogdu, Mehmet Onur; Oprea, Alexandra Elena; Trusca, Roxana; Surdu, Adrian Vasile; Ficai, Anton; Holban, Alina Maria; Iordache, Florin; Paduraru, Andrei Viorel; Filip, Diana Georgiana; Altun, Esra; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    In this study, electrospinning technique has been utilized to prepare composite nanofiber mats of polyurethane (PU)/zirconium dioxide (ZrO2) and PU/zeolite, consisted by antimicrobial properties. Tensile strength measurement test was performed for the mechanical analysis of the nanofibers. Scanning electron microscopy (SEM) were performed for displaying the morphological features of the fiber structure. XRD tests were performed for revealing the chemical structure. Antimicrobial tests were also performed to display antimicrobial effects of the produced materials. In vitro test was also performed to determine cytotoxicity and biocompatibility. The present PU/ZrO2 and PU/zeolite composite nanofibers resulted with improved mechanical properties and good antimicrobial properties against either their pure forms or other studies. Cell proliferation and viability also increased significantly with increase in zeolite and ZrO2 ratio. It is concluded that this composition provides a novel alternative as an antimicrobial material which can be suitable as a wound dressing or a coating material for various healthcare engineering applications.
  • Publication
    Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers
    (ELSEVIER SCI LTD, 2020) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Kazan, Dilek; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Glioblastoma (GBM), the most common and extremely lethal type of brain tumor, is resistant to treatment and shows high recurrence rates. In the last decades, it is indicated that standard two-dimensional (2D) cell culture is inadequate to improve new therapeutic strategies and drug development. Hence, well-mimicked three-dimensional (3D) tumor platforms are needed to bridge the gap between in vitro and in vivo cancer models. In this study, bacterial cellulose nano-crystal (BCNC) containing polycaprolactone (PCL) /gelatin (Gel) nanofibrous composite scaffolds were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. The fiber diameters in the nanofibrous matrix were increased with an increased concentration of BCNC. Moreover, fiber morphology changed from the smooth formation to the beaded formation by increasing the concentration of the BCNC suspension. In-vitro biocompatibilities of nanofibrous scaffolds were tested with U251 MG glioblastoma cells and improved cell adhesion and proliferation was compared with PCL/Gel. PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform.
  • PublicationOpen Access
    Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications
    (BMC, 2017-12) OKTAR, FAİK NÜZHET; Komur, B.; Bayrak, F.; Ekren, N.; Eroglu, M. S.; Oktar, F. N.; Sinirlioglu, Z. A.; Yucel, S.; Guler, O.; Gunduz, O.
    Background: In this study, starch and polycaprolactone (PCL), composite nanofibers were fabricated by co- axial needle electrospinning technique. Processing parameters such as polymer concentration, flow rate and voltage had a marked influence on the composite fiber diameter. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), mechanical and physical properties (such as density, viscosity and electrical conductivity) of the composite fibres were evaluated. Moreover, a cell culture test was performed in order to determine their cytotoxicity for wound dressing application. Results: The effect of starch ratio in the solution on the properties and morphological structure of the fibers produced was presented. With lower starch concentration values, the fibers have greater ultimate tensile strength characteristic (mostly 4 and 5 wt%). According to SEM results, it can be figured out that the nanofibers fabricated have good spinnability and morphology. The mean diameter of the fibers is about 150 nm. According to results of cell culture study, the finding can be determined that the increase of starch in the fiber also increases the cell viability. Conclusions: Composite nanofibers of starch/ PCL have been prepared using a coaxial needle electrospinning technique. PCL was successfully encapsulated within starch. Fiber formation was observed for different ratio of starch. With several test, analysis and measurement performed, some important parameters such as quality and effectuality of each fiber obtained for wound dressing applications were discussed in detail.
  • PublicationOpen Access
    3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering
    (MDPI, 2020-08-29) ŞAHİN, ALİ; Cakmak, Abdullah M.; Unal, Semra; Sahin, Ali; Oktar, Faik N.; Sengor, Mustafa; Ekren, Nazmi; Gunduz, Oguzhan; Kalaskar, Deepak M.
    Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (similar to 300 mu m) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.
  • Publication
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers
    (ELSEVIER SCI LTD, 2018) KAZAN, DİLEK; Sahin, Yesim M.; Su, Sena; Ozbek, Burak; Yucel, Sevil; Pinar, Orkun; Kazan, Dilek; Oktar, Faik N.; Ekren, Nazmi; Gunduz, Oguzhan
    In this study, poly (e-caprolactone) (PCL) and fish sarcoplasmic protein (FSP) (Mw < 200 kDa) composite nanofibers were fabricated by electrospinning technique. Solution properties such as density, viscosity, conductivity and surface tension were studied as a function of FSP content in the solution. The morphology, molecular interaction, degradation as well as thermal and tensile properties of PCL/FSP nanofibers were investigated. The results show that smooth and beadless PCL/FSP nanofibers with the diameters ranging from 120 +/- 29 nm to 139 +/- 41 nm were obtained. The average diameters decreased and the diameter distributions narrowed with the addition of optimum FSP amount. The characteristic picks of FSP and PCL were identified in the composite nanofibers by structural analyses. PCL/FSP nanofibers exhibited high degradation ability in comparison to electrospun pure PCL nancifibers. Moreover, the PCL/FSP nanofibers exhibit good mechanical properties (tensile strength of 5.55 MPa) with the additional FSP content. (C) 2017 Elsevier Ltd. All rights reserved.