Person:
OKTAR, FAİK NÜZHET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

OKTAR

First Name

FAİK NÜZHET

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Synthesis and characterization of interpenetrating network (IPN) based levan-polyacrylamide hydrogels and their application in conservation of cultural heritage
    (2023-11-01) ÜNAL YILDIRIM, SEMRA; OKTAR, FAİK NÜZHET; GENÇ, SEVAL; TOKSOY ÖNER, EBRU; Özen Sağlam R., Ünal Yıldırım S., Oktar F. N., Genç S., Erdem G., Toksoy Öner E.
    In this study, an IPN based enzymatic levan-polyacrylamide hydrogel (EL-PA) was developed and characterized for its structural, morphological, rheological properties and swelling kinetics to underline hydrogel properties and its potential use in paper conservation. The addition of levan also led to changes in the viscoelastic behavior of the hydrogels, with the complex viscosity of EL-PA samples showing pronounced dependence on shear rate. The swelling and the overall surface area of the hydrogels were increased with the addition of levan into the polymer network. Source associated structural differences were found to be negligible such that both microbially produced linear and enzymatically produced branched forms of levan performed equally well. Solvent loaded hydrogels were then applied on an artifact, a 19th century book of Namık Kemal, and investigated using FTIR, SEM, XRD and colorimetric analysis. Old adhesive layers were successfully removed, and hydrogels showed good compatibility and ease of application. This study has shown that levan has improved hydrogel properties and levan based systems bear high potential in conservation science.
  • PublicationOpen Access
    Marine-derived bioceramics for orthopedic, reconstructive and dental surgery applications
    (2022-11-01) OKTAR, FAİK NÜZHET; ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; EKREN, NAZMİ; ALTAN, ERAY; OKTAR F. N. , Unal S., GÜNDÜZ O., Ben Nissan B., Macha I. J. , Akyol S., Duta L., EKREN N., ALTAN E., YETMEZ M.
    Bioceramics are a fast-growing materials group, which are widely used in orthopedics, maxillofacial, dental, and reconstructive surgeries. They are produced using raw materials either from synthetic or natural sources. As naturally originated resources, the bones of sheep and cows are used after converting to calcium phosphates. Human-originated sources in the past were obtained from human cadaver bones, however now-a-days this has been discontinued. On the other hand, the \"golden standard\" in the reconstruction surgery has been using patients own bones, -i.e., autogenous bones, which heal better than other alternatives. Besides natural products, synthetic materials are produced from a range of inorganic raw and natural materials based on marine sources, such as corals, and other marine-derived materials (i.e., seashells, nacre). These are used to produce bioceramics and hence implants, devices, and bone grafts. Although during the last four decades a number of excellent books and book chapters have been published, no comprehensive review has been yet reported to cover the available marine materials and to indicate the related work and corresponding references to allow for both medical and ceramic scientists to access directly and open new avenues for further research on marine structures and their applications in orthopedic, maxillofacial, and reconstructive surgery areas. Hence, this review covers the general marine structures, their locations and availability in different countries and, current research on production methods of these unique structures that are difficult to fabricate synthetically. The authors are confident that this comprehensive review will be an excellent source not only for the ceramists, but also for the medical scientists.
  • PublicationOpen Access
    Hydroxyapatite thin films of marine origin as sustainable candidates for dental implants
    (2023-04-01) OKTAR, FAİK NÜZHET; Dorcioman G., Grumezescu V., Stan G. E., Chifiriuc M. C., Gradisteanu G. P., Miculescu F., Matei E., Popescu-Pelin G., Zgura I., Craciun V., et al.
    Novel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e., from fish bones and seashells) hydroxyapatite (MdHA) by pulsed laser deposition (PLD) technique. Besides the physical–chemical and mechanical investigations, the deposited thin films were also evaluated in vitro using dedicated cytocompatibility and antimicrobial assays. The morphological examination of MdHA films revealed the fabrication of rough surfaces, which were shown to favor good cell adhesion, and furthermore could foster the in-situ anchorage of implants. The strong hydrophilic behavior of the thin films was evidenced by contact angle (CA) measurements, with values in the range of 15–18°. The inferred bonding strength adherence values were superior (i.e., ~49 MPa) to the threshold established by ISO regulation for high-load implant coatings. After immersion in biological fluids, the growth of an apatite-based layer was noted, which indicated the good mineralization capacity of the MdHA films. All PLD films exhibited low cytotoxicity on osteoblast, fibroblast, and epithelial cells. Moreover, a persistent protective effect against bacterial and fungal colonization (i.e., 1- to 3-log reduction of E. coli, E. faecalis, and C. albicans growth) was demonstrated after 48 h of incubation, with respect to the Ti control. The good cytocompatibility and effective antimicrobial activity, along with the reduced fabrication costs from sustainable sources (available in large quantities), should, therefore, recommend the MdHA materials proposed herein as innovative and viable solutions for the development of novel coatings for metallic dental implants.
  • PublicationOpen Access
    Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease
    (MDPI, 2021-11-13) ŞAHİN, ALİ; Saylam, Ezgi; Akkaya, Yigit; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Sahin, Ali; Cam, Muhammmet Emin; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Ficai, Denisa; Ficai, Anton
    Parkinson's disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson's disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson's disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100-200 mu m were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson's disease in neural tissue engineering applications.
  • PublicationOpen Access
    An eco-friendly process to extract hydroxyapatite from sheep bones for regenerative medicine: Structural, morphologic and electrical studies
    (2023-05-01) GÜNDÜZ, OĞUZHAN; OKTAR, FAİK NÜZHET; Gavinho S. R., Bozdag M., KALKANDELEN C., Regadas J. S., Jakka S. K., GÜNDÜZ O., OKTAR F. N., Graça M. P. F.
    Hydroxyapatite (HA) promotes excellent bone regeneration in bone-tissue engineering, due to its similarity to bone mineral and its ability to connect to living tissues. These factors promote the osteointegration process. This process can be enhanced by the presence of electrical charges, stored in the HA. Furthermore, several ions can be added to the HA structure to promote specific biological responses, such as magnesium ions. The main objective of this work was to extract hydroxyapatite from sheep femur bones and to study their structural and electrical properties by adding different amounts of magnesium oxide. The thermal and structural characterizations were performed using DTA, XRD, density, Raman spectroscopy and FTIR analysis. The morphology was studied using SEM, and the electrical measurements were registered as a function of frequency and temperature. Results show that: (i) an increase of MgO amount indicates that the solubility of MgO is below 5%wt for heat treatments at 600 °C; (ii) the rise of MgO content increases the capacity for electrical charge storage; (iii) sheep hydroxyapatite presents itself as a natural source of hydroxyapatite, environmentally sustainable and low cost, and promising for applications in regenerative medicine.
  • PublicationOpen Access
    Preparation and characterization of pure natural hydroxyapatite derived from seashells for controlled drug delivery
    (2022-09-01) OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; CESUR, SÜMEYYE; AYAZ SEYHAN S., Alkaya D., Cesur S., OKTAR F. N., GÜNDÜZ O.
    The marine species are specially used for the fabrication of bioceramic nano-powders with natural methods for their use in controlled drug delivery. However, there are only very limited studies regarding the production and synthesis of hydroxyapatite (HA)-based drug delivery systems from marine structures. In this study, poly (vinyl alcohol) (PVA) containing Rifampicin (RIF)-loaded Orange Spiny Oyster Seashell (Spondylus barbatus) hydroxyapatite (HA) composite is synthesized by an in situ ultrasound-assisted method. All samples were analyzed by X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and Scanning electron microscope (SEM), respectively. The in vitro drug release tests of the obtained samples were performed in a phosphate-buffered medium (PBS) at 37 degrees C. Drug release was evaluated according to five varying kinetic models. In vitro RIF release from HA/PVA composite in phosphate buffer (pH 7.4) showed prolonged sustained drug release. From the drug release kinetic models, Higuchi and Korsmeyer-Peppas were found to be the best model for the three ratios based on the correlation coefficient. The diffusion component is less than 0.5, which indicates quasi-fickian diffusion. From the kinetic study results, the RIF-loaded marine phase composite has potential use in drug delivery applications as it shows positive sustained drug release behavior.
  • PublicationOpen Access
    Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering
    (BMC, 2016-12) OKTAR, FAİK NÜZHET; Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Gecimli, Zeynep Nur; Aydogdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E.; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, Oguzhan
    Background: We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Results: Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 degrees C, reveal about 700 % increase in the microhardness (similar to 100 and 775 HV, respectively). Composites prepared at 1300 degrees C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). Conclusion: The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.
  • PublicationOpen Access
    Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications
    (BMC, 2017-12) OKTAR, FAİK NÜZHET; Komur, B.; Bayrak, F.; Ekren, N.; Eroglu, M. S.; Oktar, F. N.; Sinirlioglu, Z. A.; Yucel, S.; Guler, O.; Gunduz, O.
    Background: In this study, starch and polycaprolactone (PCL), composite nanofibers were fabricated by co- axial needle electrospinning technique. Processing parameters such as polymer concentration, flow rate and voltage had a marked influence on the composite fiber diameter. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), mechanical and physical properties (such as density, viscosity and electrical conductivity) of the composite fibres were evaluated. Moreover, a cell culture test was performed in order to determine their cytotoxicity for wound dressing application. Results: The effect of starch ratio in the solution on the properties and morphological structure of the fibers produced was presented. With lower starch concentration values, the fibers have greater ultimate tensile strength characteristic (mostly 4 and 5 wt%). According to SEM results, it can be figured out that the nanofibers fabricated have good spinnability and morphology. The mean diameter of the fibers is about 150 nm. According to results of cell culture study, the finding can be determined that the increase of starch in the fiber also increases the cell viability. Conclusions: Composite nanofibers of starch/ PCL have been prepared using a coaxial needle electrospinning technique. PCL was successfully encapsulated within starch. Fiber formation was observed for different ratio of starch. With several test, analysis and measurement performed, some important parameters such as quality and effectuality of each fiber obtained for wound dressing applications were discussed in detail.
  • PublicationOpen Access
    A New Method for Fabrication of Nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum
    (HINDAWI LTD, 2014) OKTAR, FAİK NÜZHET; Gunduz, O.; Sahin, Y. M.; Agathopoulos, S.; Ben-Nissan, B.; Oktar, F. N.
    Biphasic bioceramic nanopowders of hydroxyapatite (HA) and beta-tricalcium phosphate (TCP) were prepared from shells of the sea snail Cerithium vulgatum (Bruguiere, 1792) using a novel chemical method. Calcination of the powders produced was carried out at varying temperatures, specifically at 400 degrees C and 800 degrees C, in air for 4 hours. When compared to the conventional hydrothermal transformation method, this chemical method is very simple, economic, due to the fact that it needs inexpensive and safe equipment, because the transformation of the aragonite and calcite of the shells into the calcium phosphate phases takes place at 80 degrees C under the atmospheric pressure. The powders produced were determined using infrared spectroscopy (FT-IR), X-ray diffraction, and scanning electron microscopy (SEM). The features of the powders produced along with the fact of their biological origin qualify these powders for further consideration and experimentation to fabricate nanoceramic biomaterials.
  • PublicationOpen Access
    Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix
    (MDPI, 2020-06-11) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Oktar, Faik Nuzhet; Ficai, Denisa; Ficai, Anton; Gunduz, Oguzhan
    Glioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.