Person:
OKTAR, FAİK NÜZHET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

OKTAR

First Name

FAİK NÜZHET

Name

Search Results

Now showing 1 - 8 of 8
  • Publication
    Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material
    (ELSEVIER, 2020) OKTAR, FAİK NÜZHET; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Topal, Fadime; Albayrak, Deniz; Guncu, Mehmet Mucahit; Cam, Muhammet Emin; Taskin, Turgut; Sasmazel, Hilal Turkoglu; Aksu, Burak; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC) blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA. The morphological and chemical composition of the resulting 3D printed composite scaffolds was determined using scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. Mechanical and thermal properties, swelling, and degradation behaviours were also investigated. The release kinetics of SC were performed. The antimicrobial analysis was evaluated against Escherichia coli and Staphylococcus aureus strains. 3D printed scaffolds have shown an excellent antibacterial effect, especially against gram-positive bacteria due to the antibacterial SC extract they contain. Furthermore, the cell viability of fibroblast (L929) cells on/within scaffolds were determined by the colourimetric MTT assay. The SA/PEG/SC scaffolds show a great promising potential candidate for diabetic wound healing and against bacterial infections. (c) 2020 Elsevier B.V. All rights reserved.
  • Publication
    3D printed bioactive composite scaffolds for bone tissue engineering
    (Elsevier B.V., 2020) OKTAR, FAİK NÜZHET; Moukbil Y., Isindag B., Gayir V., Ozbek B., Haskoylu M.E., Oner E.T., Oktar F.N., Ikram F., Sengor M., Gunduz O.
    Bone health and regeneration is crucial to human survival. With the advancement in the bone research area, bone implants have been under scrutiny to find a better material that could help in bone regeneration and growth. A wide range of material has been studied and examined to find the ideal combination. In this paper, a new blend of Tri-calcium phosphate (TCP), polycaprolactone (PCL) and bovine hydroxyapatite (BHA) was introduced to create scaffolds with fused deposition 3d printing. Effect of BHA concentration as a naturally derived and newcomer 3d printing material was investigated via FTIR, XRD, and SEM analyses. In vitro studies were exhibited that 15% (wt/wt) BHA fabricated composite scaffolds possessed more bioactivity than other cases with increasing proliferation and growth rates. © 2019 Elsevier B.V.
  • Publication
    3D Printing of Gelatine/Alginate/beta-Tricalcium Phosphate Composite Constructs for Bone Tissue Engineering
    (WILEY-V C H VERLAG GMBH, 2019) OKTAR, FAİK NÜZHET; Kalkandelen, Cevriye; Ulag, Songul; Ozbek, Burak; Eroglu, Gunes O.; Ozerkan, Dilsad; Kuruca, Serap E.; Oktar, Faik N.; Sengor, Mustafa; Gunduz, Oguzhan
    Bone tissue engineering studies have brought three-dimensional scaffolds into focus that can provide tissue regeneration with designed porosity and strengthened structure. Current research has concentrated on the fabrication of natural and synthetic polymer-based complex structures that closely mimic biological tissues due to their superior biocompatibility and biodegradabilities. Gelatine/Sodium Alginate hydrogels reinforced with different concentrations of beta-Tricalcium Phosphate (TCP) (10, 13, and 15 wt.%) were studied to form 3D bone tissue. Physical, mechanical, chemical, morphological properties and biodegradability of the constructs were investigated. Furthermore, in vitro biological assay with human osteosarcoma cell line (SAOS-2) was performed to determine the biocompatibility of the constructs. It is found that cell viability rates for all constructs were increased and maximum cell viability rate was attained for 20%Gelatine/2%Alginate/10%TCP (wt.). The present work demonstrates that 3D printed Gelatine/Alginate/TCP constructs with porous structures are potential candidates for bone tissue engineering applications.
  • Publication
    Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application
    (Springer, 2020) ŞAHİN, ALİ; Ilhan E., Ulag S., Sahin A., Ekren N., Kilic O., Oktar F.N., Gunduz O.
    In recent years, scaffolds produced in 3D printing technology have become more widespread tool due to providing more advantages than traditional methods in tissue engineering applications. In this research, it was aimed to produce patches for the treatment of tympanic membrane perforations which caused significant hearing loss by using 3D printing method. Polylactic acid (PLA) scaffolds with Chitosan (CS) added in various ratios were prepared for artificial eardrum patches. Different amounts of CS added to PLA to obtain more biocompatible scaffolds. The created patches were designed by mimicking the thickness of the natural tympanic membrane thanks to the precision provided by the 3D printed method. The produced scaffolds were analyzed separately for physical, chemical, morphological, mechanical and biocompatibility properties. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) were used for cell culture study to analyze the biocompatibility properties. 15 wt% PLA was chosen as the control group. Scaffold containing 3 wt% CS demonstrated significantly superior and favorable features in printing quality. The study continued with these two scaffolds (15PLA and 15PLA/3CS). This study showed that PLA and PLA/CS 3D printed scaffolds are a potential application for repairing tympanic membrane perforation. © Springer Nature Switzerland AG 2020.
  • PublicationOpen Access
    In Vivo Assessment of Bone Enhancement in the Case of 3D-Printed Implants Functionalized with Lithium-Doped Biological-Derived Hydroxyapatite Coatings: A Preliminary Study on Rabbits
    (MDPI, 2020-10-17) OKTAR, FAİK NÜZHET; Duta, Liviu; Neamtu, Johny; Melinte, Razvan P.; Zureigat, Oana A.; Popescu-Pelin, Gianina; Chioibasu, Diana; Oktar, Faik N.; Popescu, Andrei C.
    We report on biological-derived hydroxyapatite (HA, of animal bone origin) doped with lithium carbonate (Li-C) and phosphate (Li-P) coatings synthesized by pulsed laser deposition (PLD) onto Ti6Al4V implants, fabricated by the additive manufacturing (AM) technique. After being previously validated by in vitro cytotoxicity tests, the Li-C and Li-P coatings synthesized onto 3D Ti implants were preliminarily investigated in vivo, by insertion into rabbits' femoral condyles. The in vivo experimental model for testing the extraction force of 3D metallic implants was used for this study. After four and nine weeks of implantation, all structures were mechanically removed from bones, by tensile pull-out tests, and coatings' surfaces were investigated by scanning electron microscopy. The inferred values of the extraction force corresponding to functionalized 3D implants were compared with controls. The obtained results demonstrated significant and highly significant improvement of functionalized implants' attachment to bone (p-values <= 0.05 and <= 0.00001), with respect to controls. The correct placement and a good integration of all 3D-printed Ti implants into the surrounding bone was demonstrated by performing computed tomography scans. This is the first report in the dedicated literature on the in vivo assessment of Li-C and Li-P coatings synthesized by PLD onto Ti implants fabricated by the AM technique. Their improved mechanical characteristics, along with a low fabrication cost from natural, sustainable resources, should recommend lithium-doped biological-derived materials as viable substitutes of synthetic HA for the fabrication of a new generation of metallic implant coatings.
  • PublicationOpen Access
    3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering
    (MDPI, 2020-08-29) ŞAHİN, ALİ; Cakmak, Abdullah M.; Unal, Semra; Sahin, Ali; Oktar, Faik N.; Sengor, Mustafa; Ekren, Nazmi; Gunduz, Oguzhan; Kalaskar, Deepak M.
    Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (similar to 300 mu m) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.
  • PublicationOpen Access
    3D printed artificial cornea for corneal stromal transplantation
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020-06) ŞAHİN, ALİ; Ulag, Songul; Ilhan, Elif; Sahin, Ali; Yilmaz, Betul Karademir; Kalaskar, Deepak M.; Ekren, Nazmi; Kilic, Osman; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    The aim of this study is to understand the optical, biocompatible, and mechanical properties of chitosan (CS) and polyvinyl-alcohol (PVA) based corneal stroma constructs using 3D printing process. Corneal stroma is tested for biocompatibility with human adipose tissue-derived mesenchymal stem cells (hASCs). Physico-chemical and chemical characterization of the construct was performed using scanning electron microscopy (SEM), fourier transforms infrared spectroscopy (FTIR). Optical transmittance was analyzed using UV-Spectrophotometer. Results showed fabricated constructs have required shape and size. SEM images showed construct has thickness of 400 mu m. The FTIR spectra demonstrated the presence of various predicted peaks. The swelling and degradation studies of 13%(wt)PVA and 13%(wt)PVA/(1, 3, 5)%(wt)CS showed to have high swelling ratios of 7 days and degradation times of 30 days, respectively. The light transmittance values of the fabricated cornea constructs decreased with CS addition slightly. Tensile strength values decreased with increasing CS ratio, but we found to support intraocular pressure (IOP) which ranges from 12 to 22 mm-Hg. Preliminary biostability studies showed that composite constructs were compatible with hASCs even after 30 days' of degradation, showing potential for these cells to be differentiated to stroma layer in future. This study has implications for the rapid and custom fabrication of various cornea constructs for clinical applications.
  • Publication
    3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior
    (PERGAMON-ELSEVIER SCIENCE LTD, 2019) İNAN, AHMET TALAT; Duymaz, Busra Tugce; Erdiler, Fatma Betul; Alan, Tugba; Aydogdu, Mehmet Onur; Inan, Ahmet Talat; Ekren, Nazmi; Uzun, Muhammet; Sahin, Yesim Muge; Bulus, Erdi; Oktar, Faik Nuzhet; Selvi, Sinem Selvin; ToksoyOner, Ebru; Kilic, Osman; Bostan, Muge Sennaroglu; Eroglu, Mehmet Sayip; Gunduz, Oguzhan
    Poly(epsilon-caprolactone) (PCL), gelatin (GT) and different concentrations of low molecular weight Halomonas levan (HLh) were combined and examined to develop physical networks serving as tissue scaffolds to promote cell adhesion for biocompatibility. Three-dimensional bioprinting technique (3D bioprinting) was employed during manufacturing the test samples and their comprehensive characterization was performed to investigate the physicochemical properties and biocompatibility. Physical properties of the printing materials such as viscosity, surface tension, and density were measured to determine optimal parameters for 3D bioprinting. The scanning electron microscope (SEM) was used to observe the morphological structure of scaffolds. Fourier-Transform Infrared Spectroscopy (FT-IR) and differential scanning calorimetry (DSC) were used to identify the interactions between the components. In-vitro cell culture assays using standard human osteoblast (Hob) cells showed increased biocompatibility of the printing materials with increasing HLh content. Thus, the formulations including the HLh are expected to be a good candidate for the production of 3D printed materials.