Person: OKTAR, FAİK NÜZHET
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
OKTAR
First Name
FAİK NÜZHET
Name
11 results
Search Results
Now showing 1 - 10 of 11
Publication Metadata only Studies on goat hydroxyapatite/commercial inert glass biocomposites(SPRINGER, 2019) OKTAR, FAİK NÜZHET; Akyurt, N.; Yetmez, M.; Oktar, F. N.In this study, mechanical properties and microstructural analysis of goat-derived hydroxyapatite/commercial inert glass biocomposites are considered in the temperature range between 1000 and 1300 degrees C. The results indicate that the best values of maximum compressive strength and microhardness are achieved in the samples sintered at 1200 degrees C for the glass in the weight of 5 and 10%. Moreover, above 1000 degrees C, decomposition of hydroxyapatite and new phase formations such as whitlockite and silicocarnotite play also a major role in the hardness and strength for goat hydroxyapatite/commercial inert glass biocomposites.Publication Metadata only Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications(ELSEVIER SCIENCE BV, 2014) OKTAR, FAİK NÜZHET; Gunduz, O.; Gode, C.; Ahmad, Z.; Gokce, H.; Yetmez, M.; Kalkandelen, C.; Sahin, Y. M.; Oktar, F. N.The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10 wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350 MPa) followed by sintering in air (1000-1300 degrees C for 4 h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1 wt% CeO2 composites) between 1200 and 1300 degrees C, show a 3.3% increase in the microhardness (564 and 582.75 HV, respectively). Composites prepared at 1300 degrees C demonstrate the greatest compression strength with comparable results for 5 and 10 wt% CeO2 content (106 and 107 MPa) which are significantly better than those for 1 wt% and those that do not include any CeO2 (90 and below 60 MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. (C) 2014 Elsevier Ltd. All rights reserved.Publication Metadata only Antimicrobial and Cytocompatible Bovine Hydroxyapatite-Alumina-Zeolite Composite Coatings Synthesized by Pulsed Laser Deposition from Low-Cost Sustainable Natural Resources(AMER CHEMICAL SOC, 2020) OKTAR, FAİK NÜZHET; Popescu-Pelin, Gianina; Ristoscu, Carmen; Duta, Liviu; Stan, George E.; Pasuk, Iuliana; Tite, Teddy; Stan, Miruna Silvia; Bleotu, Coralia; Popa, Marcela; Chifiriuc, Mariana C.; Oktar, Faik Nuzhet; Nicarel, Anca; Mihailescu, Ion N.Bovine hydroxyapatite (BHA) and BHA blended with clinoptilolite (CLIN) and alumina (Al2O3) coatings were synthesized using pulsed laser deposition (PLD) with a KrF* excimer laser source (lambda = 248 nm, tau(FWHM) <= 25 ns). Physical-chemical characteristics and the potential use of coatings for preventing bacteria adhesion and biofilm formation were investigated. Optimized PLD conditions were selected for coatings with rough morphologies, suitable for good cell adhesion and implant anchorage and good replication of the source target composition. The crystallinity of composite coatings was progressively decreasing with the augment of the Al2O3 and CLIN contents, which in turn can facilitate an efficacious release of active components. Al2O3- and CLIN-containing coatings exhibited high cytocompatibility and specific antibiofilm profiles, preventing the initiation and maturation of bacterial biofilms. Optimum biological activity profiles associated with the use of sustainable and/or inexpensive materials are, in our opinion, of key importance for the future development of performant implant coatings, which should he perfectly compatible with the surrounding tissue while preventing postsurgical endogenous or nosocomial infections.Publication Metadata only Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition(ELSEVIER SCIENCE BV, 2017) OKTAR, FAİK NÜZHET; Duta, L.; Mihailescu, N.; Popescu, A. C.; Luculescu, C. R.; Mihailescu, I. N.; Cetin, G.; Gunduz, O.; Oktar, F. N.; Popa, A. C.; Kuncser, A.; Besleaga, C.; Stan, G. E.We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film. Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications. (C) 2017 Elsevier B.V. All rights reserved.Publication Open Access Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering(BMC, 2016-12) OKTAR, FAİK NÜZHET; Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Gecimli, Zeynep Nur; Aydogdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E.; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, OguzhanBackground: We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Results: Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 degrees C, reveal about 700 % increase in the microhardness (similar to 100 and 775 HV, respectively). Composites prepared at 1300 degrees C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). Conclusion: The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.Publication Metadata only Histomorphometric evaluation of implants coated with enamel or dentine derived fluoride-substituted apatite(SPRINGER, 2008) OKTAR, FAİK NÜZHET; Kurkcu, Mehmet; Benlidayi, Mehmet Erme; Ozsoy, Serhat; Ozyegin, Luetfiye Sevgi; Oktar, Faik Nuzhet; Kurtoglu, CemObjectives The aim of this study was to compare osseous healing characteristics of titanium implants coated with enamel-derived fluoride-substituted apatite (EFSA) or dentin-derived fluoride-substituted apatite (DFSA). Methods Fluoride-substituted apatite was derived from extracted human teeth with calcination method at 850 degrees C. DFSA and EFSA were separated and carefully ground with a blade grinder. Twenty-four titanium implants were prepared from a 99.99% pure titanium bar. EFSA and DFSA powders were sprayed separately on implants. As control group, unsprayed and sandblasted pure titanium implants were used. Eight adult rams were used in the study. One EFSA coated, 1 DFSA coated and 1 control implants were placed into right tibia of each rams. The rams were sacrificed after 6 months of healing. Undecalcified sections were prepared according to Donath's method and histomorphometric evaluation of implants was made. Results The mean bone contact percentage of DFSA-coated, EFSA-coated and control implants was 89.88% +/- 2.34, 70.19% +/- 13.11 and 53.12% +/- 5.76 respectively. This study suggests that DFSA-coated implants achieved better bone contact than EFSA-coated implants (P < 0.05). Also study groups presented better bone contact than control group (P < 0.05). Conclusions The results of this study show that although DFSA-coated implants achieved better bone contact, both DFSA and EFSA can be considered as appropriate coating materials.Publication Open Access A New Method for Fabrication of Nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum(HINDAWI LTD, 2014) OKTAR, FAİK NÜZHET; Gunduz, O.; Sahin, Y. M.; Agathopoulos, S.; Ben-Nissan, B.; Oktar, F. N.Biphasic bioceramic nanopowders of hydroxyapatite (HA) and beta-tricalcium phosphate (TCP) were prepared from shells of the sea snail Cerithium vulgatum (Bruguiere, 1792) using a novel chemical method. Calcination of the powders produced was carried out at varying temperatures, specifically at 400 degrees C and 800 degrees C, in air for 4 hours. When compared to the conventional hydrothermal transformation method, this chemical method is very simple, economic, due to the fact that it needs inexpensive and safe equipment, because the transformation of the aragonite and calcite of the shells into the calcium phosphate phases takes place at 80 degrees C under the atmospheric pressure. The powders produced were determined using infrared spectroscopy (FT-IR), X-ray diffraction, and scanning electron microscopy (SEM). The features of the powders produced along with the fact of their biological origin qualify these powders for further consideration and experimentation to fabricate nanoceramic biomaterials.Publication Metadata only Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs(SAGE PUBLICATIONS INC) ŞAHİN, ALİ; Izgordu, Muhammet Sefa; Uzgur, Evren Isa; Ulag, Songul; Sahin, Ali; Yilmaz, Betul Karademir; Kilic, Beyhan; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, OguzhanThe aim of this study is to evaluate the mechanical and biological performance of cartilage-like constructs produced by 3D printing. During the investigation, poly(epsilon-caprolactone) (PCL) and polyvinylpyrrolidone (PVP) were used as a matrix polymer and low-molecular-weight chitosan (CS), hyaluronic acid (HA), and alginic acid sodium salt (SA) were integrated separately with the polymer matrix to fabricate the constructs. Thermal, mechanical, morphology, and chemical properties and swelling, degradation, and biocompatibility behaviors were evaluated in detail. With the addition of 3 fillers, the melting temperature of the matrix increased with the addition of fillers, and PCL/3wt.%PVP/1wt.%HA had the highest melting temperature value. Mechanical characterization results demonstrated that the printed PCL/3wt.%PVP/1wt.%CS displayed the highest compressive strength of around 9.51 MPa. The compressive strength difference between the PCL/3wt.%PVP and PCL/3wt.%PVP/1wt.%CS was 5.38 MPa. Biocompatibility properties of the constructs were tested by mitochondrial dehydrogenase activity, and in vitro studies showed that the PCL/3wt.%PVP/1wt.%HA composite construct had more cell viability than the other constructs by making use of the mesenchymal stem cell line.Publication Unknown Reinforcing of Biologically Derived Apatite with Commercial Inert Glass(SAGE PUBLICATIONS LTD, 2009) OKTAR, FAİK NÜZHET; Gunduz, O.; Ahmad, Z.; Ekren, N.; Agathopoulos, S.; Salman, S.; Oktar, F. N.Apatite-based ceramics, derived from fine powder of calcinated bovine-bone (BHA), were successfully reinforced with 5 and 10 wt% commercial inert glass (CIG), which contained biocompatible elements, via sintering at different temperatures between 1000 and 1300 degrees C. The products were subjected to mechanical testing and microstructural and crystallographic analyses. Comparison of the experimental results with those from earlier similar studies shows that CIG is superior for reinforcing of BHA ceramics compared with other bioactive glasses. Provided that the CIG addition does not exceed a certain limit, optimally being approximately 5 wt%, the resultant BHA-CIG materials can exhibit high strength after sintering and remarkable resistance toward over-firing at 1300 degrees C. The influence of the amount of CIG on the developed microstructure and crystalline structure after sintering at different temperatures is discussed.Publication Metadata only Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA)(SPRINGER, 2006) OKTAR, FAİK NÜZHET; Goller, G; Oktar, FN; Agathopoulos, S; Tulyaganov, DU; Ferreira, JMF; Kayali, ES; Peker, IThe influence of sintering temperature on densification, microstructure and the mechanical properties of bovine hydroxyapatite (BHA), produced by a calcination method, was investigated. Densification and mechanical properties improved with increasing sintering temperature in the range between 1000 degrees C and 1300 degrees C, with optimum properties being obtained at a sintering temperature of 1200 degrees C. The measured mechanical properties indicate that sintered BHA bodies are interesting biomaterials for further investigation in biomedical applications.