Person:
AKKİPRİK, MUSTAFA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

AKKİPRİK

First Name

MUSTAFA

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Next-Generation Sequencing Identifies BRCA1 and/or BRCA2 Mutations in Women at High Hereditary Risk for Breast Cancer with Shorter Telomere Length
    (MARY ANN LIEBERT, INC, 2020) GÜLLÜ AMURAN, GÖKÇE; Eyuboglu, Irem Peker; Yenmis, Guven; Bingol, Elif Naz; Yuksel, Sirin; Tokat, Fatma; Ozbek, Pemra; Amuran, Gokce Gullu; Yakicier, Cengiz; Akkiprik, Mustafa
    Telomeres, and telomere length in particular, have broad significance for genome biology and thus are prime research targets for complex diseases such as cancers. In this context, BRCA1 and BRCA2 gene mutations have been implicated in relationship to telomere length, and breast cancer susceptibility. Yet, the linkages among human genetic variation and telomere length in persons with high hereditary cancer risk are inadequately mapped. We report here original findings in 113 unrelated women at high hereditary risk for breast cancer, who were characterized for the BRCA1 and BRCA2 mutations using next-generation sequencing. Thirty-one BRCA2 and 21 BRCA1 mutations were identified in 47 subjects (41.6%). The women with a mutation in BRCA1 and/or BRCA2 genes had, on average, 12% shorter telomere compared to women with no BRCA1 or BRCA2 mutation (p = 0.0139). Moreover, the association between telomere length and BRCA mutation status held up upon stratified analysis in those with or without a breast cancer diagnosis. We also indentified two rare mutations, c.536_537insT and c.10078A>G, and a novel mutation c.8680C>G in BRCA2 that was studied further by homology modeling of the DNA binding tower domain of BRCA2 and the structure of the protein. These data collectively lend evidence to the idea that BRCA1 and BRCA2 mutations play a role in telomere length in women at high hereditary risk for breast cancer. Further clinical and diagnostics discovery research on BRCA1 and BRCA2 variation, telomere length, and breast cancer mechanistic linkages are called for in larger study samples.
  • Publication
    Dissection of signaling pathways in fourteen breast cancer cell lines using reverse-phase protein lysate microarray
    (SAGE PUBLICATIONS INC, 2006) AKKİPRİK, MUSTAFA; Akkiprik, Mustafa; Nicorici, Daniel; Cogdell, David; Jia, Yu Jack; Hategan, Andrea; Tabus, Ioan; Yli-Harja, Olli; Yu, Dihua; Sahin, Aysegul; Zhang, Wei
    Signal transduction pathways play a crucial role in breast cancer development, progression, and response to different therapies. A major problem in breast cancer therapy is the heterogeneity among different tumor types and cell lines commonly used in preclinical studies. To characterize the signaling pathways of some of the commonly used breast cancer cell lines and dissect the relationship among a number of pathways and some key genetic and molecular events in breast cancer development, such as p53 mutation, ErbB2 expression, and estrogen receptor (ER)/progesterone receptor (PR) status, we performed pathway profiling of 14 breast cancer cell lines by measuring the expression and phosphorylation status of 40 different cell signaling proteins with 53 specific antibodies using a protein lysate array. Cluster analysis of the expression data showed that there was close clustering of phosphatidylinositol 3-kinase, Akt, mammalian target of rapamycin (mTOR), Src, and platelet-derived growth factor receptor beta (PDGFR beta) in all of the cell lines. The most differentially expressed proteins between ER- and PR-positive and ER- and PR-negative breast cells were mTOR, Akt (pThr308), PDGFR beta, PDGFR beta (pTyr751), panSrc, Akt (pSer473), insulin-like growth factor-binding protein 5 (IGFBP5), Src (pTyr418), mTOR (pSer2448), and IGFBP2. Many apoptotic proteins, such as apoptosis-inducing factor, IGFBP3, bad, bax, and cleaved caspase 9, were overexpressed in mutant p53-carrying breast cancer cells. Hexokinase isoenzyme 1, ND2, and c-kit were the most differentially expressed proteins in high and low ErbB2-expressing breast cancer cells. This study demonstrated that ER/PR status, ErbB2 expression, and p53 status are major molecules that impact downstream signaling pathways.