Person: ARABACI TAMER, SEVİL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ARABACI TAMER
First Name
SEVİL
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Neuropeptide W Exhibits Preventive and Therapeutic Effects on Acetic Acid-Induced Colitis via Modulation of the Cyclooxygenase Enzyme System(2023-01-01) ARABACI TAMER, SEVİL; ERCAN, FERİHA; YEGEN, BERRAK; ARABACI TAMER S., Akbulut S., Erdogan O., Cevik O., ERCAN F., YEGEN B.Background The novel peptide neuropeptide W (NPW) was originally shown to function in the control of feeding behavior and energy homeostasis. The aim of this study was to elucidate the putative preventive and therapeutic effects of NPW on colitis-associated oxidative injury and the underlying mechanisms for its action.Methods Sprague-Dawley rats in the acute colitis groups received NPW (0.5, 1 or 5 mu g/kg/day) injections prior to induction of colitis with acetic acid, while the chronic colitis groups were treated after the induction of colitis. In both acute and chronic colitis (CC) groups, treatments were continued for 5 days and the rats were decapitated at the 24th hour of the last injections and colon tissues were collected for assessments.Results NPW pretreatment given for 5 days before colitis induction, as well as treating rats with NPW during the 5-day course of CC, abolished colonic lipid peroxidation. NPW treatment prevented colitis-induced reduction in blood flow, diminished neutrophil infiltration, and pro-inflammatory cytokine responses. NPW pretreatment only at the higher dose reduced colonic edema and microscopic score and preserved colonic glutathione stores. Elevations in cyclooxygenase (COX) enzyme activity and COX-1 protein level during the acute phase of colitis as well as reduction in COX-2 were all reversed with NPW pretreatment. In contrast, NPW treatment was effective in reducing the elevated COX-2 concentration during the chronic phase.Conclusions NPW alleviates acetic acid-induced oxidative colonic injury in rats through the upregulation of colonic blood flow as well as the inhibition of COX-2 protein expression and pro-inflammatory cytokine production.Publication Metadata only Nesfatin-1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion(ELSEVIER SCIENCE INC, 2018) YILDIRIM, ALPER; Tamer, Sevil Arabaci; Yildirim, Alper; Koroglu, M. Kutay; Cevik, Ozge; Ercan, Feriha; Yegen, Berrak C.Testicular torsion causes ischemia-reperfusion injury and an increased risk of infertility. Nesfatin-1 is a novel peptide with antioxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we aimed to investigate the putative beneficial effects of nesfatin-1 on oxidative injury and impaired testicular function induced by testis torsion. Under anesthesia, male Sprague-Dawley rats (180-230 g; n = 24) had sham-operation or they underwent testicular torsion by rotating the left testis 720 degrees and fixing it for 2 h, followed by a 2-h detorsion. Rats in each group were treated intraperitoneally with either nesfatin-1 (0.3 mu g/kg) or saline prior to the torsion or sham-torsion. At the end of the 4-h experimental period, tissue samples were removed for evaluation of spermatozoa, molecular and histochemical analyses. In saline-treated torsion/detorsion group, a high percentage of abnormal spermatozoa with head defects was observed, which was abolished in nesfatin-1 -treated torsion/detorsion group. The levels of 8-OHdG, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, caspase-3 were increased in the saline-treated torsion/detorsion group as compared to sham-operated group, while nesfatin-1 pre-treatment significantly decreased the expressions of the pro-inflammatory cytokines, depressed apoptosis, and also reduced the tubular degeneration. In addition, nesfatin-1 in torsion/detorsion group elevated expressions of transforming growth factor (TGF)-beta and reduced expressions of protein kinase B (AKT) and cAMP response element binding protein (CREB) in the testis tissue. The present findings show that nesfatin-1, by regulating AKT and CREB signaling pathways and pro-inflammatory/anti-inflammatory cytokine balance, preserves the spermatogenic cells and ameliorates torsion-detorsion-induced tubular degeneration.