Person: KAHRAMAN, MEMET VEZİR
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
KAHRAMAN
First Name
MEMET VEZİR
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Preparation and electrical properties of polypyrrole containing photocured thiol-ene based composites(ELSEVIER SCIENCE SA, 2015) DUMLUDAĞ, FATİH; Madakbas, Seyfullah; Dumludag, Fatih; Eminoglu, Elif Merve; Sen, Ferhat; Kahraman, Memet VezirIn this study, UV curable polypyrrole containing thiol ene based composite films were prepared by the reaction between Propoxylated (2) neopentyl glycol diacrylate (SR 9003), Trimethylolpropane tris(3-mercaptopropionate), (3-mercaptopropyl)trimethoxysilane, 1-vinyl-2-pyrrolidinone and polypyrrole. FT-IR was used to confirm the formation of the composites. Thermal stability of the samples was evaluated by thermogravimetric analysis (TGA). The samples were characterized with the following analysis; gel content, water absorption capacity. Hydrophobicity of the samples was determined by the contact angle measurements. Direct current (dc) conductivity measurements of samples were performed depending on polypyrrole content in the composites at room temperature. Capacitance measurements (40 Hz-100 kHz) of the samples were performed in the temperature range of 295-378 K. Dc conductivity and capacitance values of the samples were measured in vacuum in dark. Dc conductivity measurements revealed that dc conductivity values increased with increasing polypyrrole content. Dielectric measurements revealed that dielectric constant of the samples increased with increasing temperature and decreased with increasing frequency. It is also observed that dielectric constant of the samples decreased with increasing polypyrrole content. (C) 2014 Elsevier B.V. All rights reserved.Publication Metadata only Thermal and dielectric properties of flexible polyimide nanocomposites with functionalized nanodiamond and silver nanoparticles(2023-05-01) BİRTANE, HATİCE; MADAKBAŞ, SEYFULLAH; ESMER, KADİR; KAHRAMAN, MEMET VEZİR; Birtane H., Cigil A. B., Madakbaş S., Esmer K., Kahraman M. V.In the present study, amine groups were first modified to diamond and silver nanoparticles using APTMS to improve their homogeneous dispersion and compatibility in polyamic acid. Flexible polyimide nanocomposite films were successfully prepared by adding modified nanodiamond and silver nanoparticles to 4,4 \"-(1,3-phenylenedioxy) dianiline and benzophenone-3,3 \",4,4 \"-tetracarboxylic dianhydrides with different proportions. The effects of added amine-modified nanoparticles on dielectric constant and thermal stability were investigated. With SEM analysis, nanoparticles were homogeneously distributed on the polyimide surface and the presence of Si atom resulting from APTMS modification is clearly seen with the SEM-EDAX results. Considering the thermal resistance, the maximum decomposition temperature of the nano particle-free PI film was found to be 501 degrees C, while the thermal decomposition temperatures of the PI nanocomposite film that contains 1% m-Ag and the PI film that contains 5% m-ND, 502 degrees C and 505 degrees C, respectively. Also, it was seen that the dielectric constants of the prepared nanocomposite films that contain m-Ag NP decrease with increasing m-Ag NP ratio, and the dielectric constants of the films that contain m-ND increase with increasing m-ND ratio.Publication Metadata only Preparation, Characterization, Thermal, and Dielectric Properties of Polypyrrole/h-BN Nanocomposites(WILEY-HINDAWI, 2014) DUMLUDAĞ, FATİH; Madakbas, Seyfullah; Sen, Ferhat; Kahraman, Memet Vezir; Dumludag, FatihThe aim of this study was to improve thermal stability and dielectric properties of polypyrrole (PPy) by adding hexagonal boron nitride (h-BN). PPy was synthesized, and PPy/h-BN nanocomposites were prepared by adding various proportions of h-BN to PPy. The chemical structures of the samples were investigated by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites were determined by thermogravimetric analysis and differential scanning calorimetry. X-ray diffraction analysis of the samples was carried out. The surface morphologies of the samples were investigated by a scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The obtained results prove that the nanocomposite system is more thermally stable than the pure PPy. Dielectric measurements revealed that the dielectric constant of the pellets increased with increasing temperature and decreased with increasing frequency. It is also observed that the dielectric constant of the pellets decreased with increasing nano-hBN content (between 1 and 4 wt%).