Person: GÜLLÜOĞLU, ARİF NİHAT
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
GÜLLÜOĞLU
First Name
ARİF NİHAT
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders(SPRINGER, 2021) GÜLLÜOĞLU, ARİF NİHAT; Demirci, Selim; Yildirim, Bercem Kiran; Tuncay, Mehmet Masum; Kaya, Nusret; Gulluoglu, Arif NihatIn this study, MgO particles were synthesized via sol-gel technique and calcined at 600 degrees C for 2 h with heating rates of 2, 5, 10, and 20 degrees C/min, respectively, for the first time. Comprehensive characterizations were performed by TGA-DTA, XRD, SEM, Raman spectroscopy, BET analysis, photoluminescence techniques. The kinetic parameters were determined by employing four popular model-free methods: Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS), Starink, and Tang methods. MgO powders had a high crystalline structure regardless of different heating rates based on XRD results. Surface morphologies and surface areas of MgO powders did not change with heating rates. Surface morphologies of MgO powders were found to be nearly spherical with some rounded shape and exhibiting faceted edges in some regions. The specific surface area of MgO powders was found to be 5.9179, 5.6883, 3.6617, and 4.1942 m(2)/g with increasing heating rate, respectively. According to Raman analysis, MgO particles produced at 2 degrees C/min possessed higher surface defects like oxygen vacancies. The PL emission signals for MgO particles were observed at similar to 500 nm consisting of broad peaks, which might be attributed to oxygen defects on the surface of particles. The antibacterial performances of MgO particles were carried out against gram-negative E. coli and gram-positive B. subtilis by means of the agar disc diffusion method. MgO particles produced at a heating rate of 2 degrees C/min possessed the biggest inhibition zone against gram-positive B. subtilis. Having better antibacterial performances for MgO particles produced at 2 degrees C/min heating rate might be attributed to surface oxygen vacancies and surface area, which led to the generation of more reactive oxygen species (ROS). [GRAPHICS] .Publication Metadata only Effect of surface modifications of additively manufactured Ti-6Al-4V alloys on apatite formation ability for biomedical applications(ELSEVIER SCIENCE SA, 2021) GÜLLÜOĞLU, ARİF NİHAT; Demirci, Selim; Dalmis, Ramazan; Dikici, Tuncay; Tuncay, Mehmet Masum; Kaya, Nusret; Gulluoglu, Arif NihatIn this study, Ti-6Al-4V alloys were additively manufactured (AM) with different laser powers. The goal was to investigate the effect of different surface modifications on apatite formation ability. Four types of surface modifications, namely, sandblasting (S), acid etching (E), anodic oxidation (AO) and anodic spark oxidation (ASO), were achieved on the Ti-6Al-4V samples. The microstructure, phase, morphology, roughness and wettability properties were examined by optical microscope (OM), scanning electron microscope (SEM), Xray diffraction (XRD), surface profilometer and contact angle techniques. The bioactivity analysis was performed in simulated body fluid (SBF) for 2 weeks. The results indicated that the microstructure, surface topography, roughness and wettability influenced the apatite formation were affected by the production laser power. Generally, the samples 3 showed higher Ca and P ion ratio value because of percentage of beta phase amount, the presence of bioactive phases on the surfaces. The E3 sample resulted in the best apatite formation theoretically. The etching procedure of AM Ti-6Al-4V in the acidic solution can be applied to improve the apatite formation ability of Ti-6Al-4V alloys. (c) 2021 Elsevier B.V. All rights reserved.Publication Metadata only Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications(SPRINGER) GÜLLÜOĞLU, ARİF NİHAT; Demirci, Selim; Dikici, Tuncay; Gulluoglu, Arif NihatIn this study, micro- and nanosurface structures were fabricated by sandblasting (S), acid-etching (E), anodic oxidation (A), sandblasting/acid-etching (SE), sandblasting/anodization (SA) and sandblasting/acid-etching/anodization (SEA) processes on Ti6Al4V alloy in order to investigate apatite formation ability. The phase, morphology, topography, roughness and wettability properties of surfaces were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), surface profilometer and contact angle techniques. In vitro tests were performed in simulated body fluid (SBF) for 21 days. The results showed that the surface topography, roughness and wettability changed the Ca and P ion ratio. The SEA sample had high surface topography and the lowest contact angle value. The value of Ca/P ratio was 1.81 for SEA sample. The SEA sample showed the highest Ca/P ratio value which was close to theoretical value. Ca and P ion ratio value because of bioactive phases on the surfaces, high surface roughness and lower contact angle values as compared to other samples. The proposed methodology improves the apatite formation ability of Ti6Al4V alloys. Sandblasted/acid-etched/anodized surfaces can be an alternative to conventional sandblasted/acid-etched implant surfaces.Publication Open Access Investigation of surface-modified EBM printed Ti-6Al-4V alloys for biomedical applications(2022-11-01) DEMİRCİ, SELİM; TÜNÇAY, MEHMET MASUM; GÜLLÜOĞLU, ARİF NİHAT; DEMİRCİ S., DİKİCİ T., TÜNÇAY M. M. , DALMIŞ R., KAYA N., Kanbur K., Sargin F., GÜLLÜOĞLU A. N.This work aimed to comprehensively assess the influence of various surface modifications on the formation of apatite ability for EBM Ti-6Al-4V alloy. Sandblasting (S), acid-etching (E), sandblasting and acid-etching (SE), anodization (NA), micro-arc oxidations in 1 M H2SO4 solution (SM) and 1 M H3PO4 solution (PM) methods were applied to modify electron beam melted (EBM) Ti-6Al-4V surface. The alpha/alpha\"-Ti structures and TiO2 phases were detected by XRD. The surface roughness (Ra) values ranged from 0.25 mu m and 2.86 mu m. The wettability of samples was between around 25 degrees and 104 degrees The SM sample possessed the lowest contact angle. In vitro tests were employed in the simulated body fluid (SBF) solution for 28 days. The samples with different surface textures demonstrated bioactive behaviors. In vitro test results showed that apatite layers formed on the surfaces. The SM sample exhibited good apatite formation ability when the Ca/P ratios were considered. The apatite formation for the SM sample might derive from high roughness, low contact angle value, the existence of Ti-OH groups, and anatase and rutile phases. The SM can be implemented to boost bioactivity on EBM Ti-6Al-4V alloys.