Person:
SAYIN, CENK

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SAYIN

First Name

CENK

Name

Search Results

Now showing 1 - 10 of 10
  • Publication
    Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol-Diesel Fuel Blends at Different Injection Timings
    (AMER CHEMICAL SOC, 2008) SAYIN, CENK; Canakci, Mustafa; Sayin, Cenk; Gumus, Metin
    In the recent years, environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Therefore, alcohols as renewable and alternative energy sources for the diesel engines gain importance. For this reason, in this study, the performance, exhaust emissions, and combustion characteristics of a single cylinder diesel engine have been experimentally investigated under different injection timings when methanol-blended diesel fuel was used from 0 to 15%, with an increment of 5%. The tests were conducted at three different injection timings (15 degrees, 20 degrees, and 25 degrees CA BTDC) by changing the thickness of advance shim. All tests were conducted at four different loads (5, 10, 15, and 20 Nm) at constant engine speed of 2200 rpm. The experimental test results showed that BSFC, BSEC, combustion efficiency, and NOx and CO2 emissions increased as BTE, rate of heat release, peak cylinder pressure, smoke number, and CO and UHC emissions decreased with an increasing amount of methanol in the fuel blend. In comparison to the values at the original injection timing (20 degrees CA BTDC), the values at the retarded injection timing (15 degrees CA BTDC) of peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions decreased, while smoke number and UHC and CO emissions increased at all test conditions. On the other hand, The advanced injection timing (25 degrees CA BTDC), smoke number, and UHC and CO emissions diminished and peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions increased at all test conditions. In terms of BSFC, BSEC, and BTE, retarded and advanced injection timings gave negative results in all fuel blends compared to original injection timing.
  • Publication
    Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel
    (AMER CHEMICAL SOC, 2009) SAYIN, CENK; Canakci, Mustafa; Sayin, Cenk; Ozsezen, Ahmet Necati; Turkcan, Ali
    In this study, the effect of injection pressure on the engine performance, exhaust emissions and combustion characteristics of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated when using methanol-blended diesel fuel from 0 to 15% with an increment of 5%. The engine has original injection pressure of 200 bar. The tests were conducted at three different injection pressures (180, 200, and 220 bar) with decreasing or increasing washer number. All tests were conducted at four different loads (5, 10, 15, and 20 N m) for constant engine speed of 2200 rpm. The experimental test results proved that brake thermal efficiency, heat release rate, peak cylinder pressure, smoke number, carbon monoxide and unburned hydrocarbon emissions reduced as brake-specific fuel consumption, brake specific energy consumption, combustion efficiency, and nitrogen oxides and carbon dioxide emissions increased with increasing amount of methanol in the fuel blend. When comparing the results to the original injection pressure, at the decreased injection pressure (180 bar), peak cylinder pressure, rate of heat release, combustion efficiency, and nitrogen oxides and carbon dioxide emissions decreased, whereas smoke number, unburned hydrocarbon, and carbon monoxide emissions increased at all test conditions. On the other hand, with the increased injection pressure (220 bar), smoke number, unburned hydrocarbon, and carbon monoxide emissions diminished, and peak cylinder pressure, heat release rate, combustion efficiency, and nitrogen oxides and carbon dioxide emissions boosted at all test conditions. With respect to brake-specific fuel consumption, brake-specific energy consumption, and brake thermal efficiency, changing injection pressure gave negative results in the all fuel blends compared to the original injection pressure.
  • Publication
    Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2009) SAYIN, CENK; Sayin, Cenk; Ilhan, Murat; Canakci, Mustafa; Gumus, Metin
    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 degrees, 20 degrees and 25 degrees CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 degrees CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (c) 2008 Elsevier Ltd. All rights reserved.
  • Publication
    Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2015) SAYIN, CENK; Sayin, Cenk; Balki, Mustafa Kemal
    The study focuses on the effect of CR (compression ratio) on the emission, performance and, combustion characteristics of a gasoline engine fueled with iso-butanol (10%, 30% and 50%) blended gasoline fuel. The tests were conducted for three different CRs (9:1,10:1 and 11:1) at 2600 rpm and wide-open throttle. The results indicate that the BSCF (brake specific fuel consumption), BTE (brake thermal efficiency) and the emissions of CO2 (carbon dioxide) increased while UHC (unburned hydrocarbon) and CO (carbon monoxide) emissions decreased with the increase in the amount of iso-butanol in the fuel mixture at all CRs. The best results for BSFC, BTE, the emissions of CO and UHC were observed at increased the CR. Moreover, the ICP (in-cylinder pressure) generally increased with the increase in the amount of isobutanol in the fuel mixture and the ICP and HRR (heat release rate) rose earlier than those values in gasoline. (C) 2015 Elsevier Ltd. All rights reserved.
  • Publication
    The determination of the best operating parameters for a small SI engine fueled with methanol gasoline blends
    (ELSEVIER, 2021) SAYIN, CENK; Balki, Mustafa Kemal; Temur, Mustafa; Erdogan, Sinan; Sarikaya, Murat; Sayin, Cenk
    It is extremely important to ensure a clean and sustainable energy supply due to the decreasing fossil energy resources, their increasing costs and irreversible damages on the ecological balance. Considering this situation, this study focuses on the determination of the best operating parameters for a small spark ignition (SI) engine fueled with methanol/gasoline blend (M5, M10, M15 and M20). Moreover, operating conditions are optimized according to different weights between performance and emission. In the first stage of the study, engine tests were carried out at different loads (10 and 20 Nm) and compression ratios (CR) (7:1, 8:1 and 9:1) and the changes in engine performance and exhaust emissions were presented. In addition, these experimental results were used in optimization. According to the engine test results, performance and emissions of small SI engine were generally improved with increasing the methanol ratio in the blend fuels under all experimental conditions. When exhaust emissions were evaluated, it was observed that M20 was more favorable than gasoline if it was used in CR of 9:1 in a small SI engine. In the second stage of the study, the effect of experimental variables on the experimental results was statistically investigated with analysis of variance (ANOVA). The results of ANOVA analysis showed that all experimental variables were statistically significant for both engine performance and exhaust emissions. In the last stage of the study, the operating conditions of the engine were optimized according to eleven different weight ratios between performance and emissions, with a multi-criteria decision-making method based on grey relational analysis (GRA). According to the optimization results, the most suitable operating parameters were presented to the readers with regard to the desired weight ratio in engine performance and exhaust emission. The presented optimization model can be used for the design of electronic fuel systems for alternative fuel engines. Moreover, suitable engine parameters determined according to the selected weight ratio can also be adjusted structurally in the engine.
  • Publication
    Influence of injection timing on the exhaust emissions of a dual-fuel CI engine
    (PERGAMON-ELSEVIER SCIENCE LTD, 2008) SAYIN, CENK; Sayin, Cenk; Uslu, Kadir; Canakci, Mustafa
    Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27 degrees CA BTDC. The tests were performed at five different injection timings (21 degrees, 24 degrees, 27 degrees, 30 degrees, and 33 degrees CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NOx and CO2 emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21 degrees and 24 degrees CA BTDC), NOx and CO2 emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30 degrees and 33 degrees CA BTDC), HC and CO emissions diminished, and NOx and CO2 emissions boosted for all test conditions. (C) 2007 Elsevier Ltd. All rights reserved.
  • Publication
    The optimization of engine operating parameters via SWARA and ARAS hybrid method in a small SI engine using alternative fuels
    (ELSEVIER SCI LTD, 2020) SAYIN, CENK; Balki, Mustafa Kemal; Erdogan, Sinan; Aydin, Selman; Sayin, Cenk
    In most countries, mandatory emission norms have been established to reduce greenhouse gas emissions. In addition, the production and use of diesel engines with high emissions have been prohibited in some countries. For this reason, spark ignition (SI) engines have become important. Research on the use of renewable energy sources and the development of energy-efficient engines is increasing in terms of sustainability. It is known that alcohol fuels with high knock resistance than gasoline generate higher engine efficiency under different engine operating conditions. In this study, it is determined that the optimum operating parameters of an SI engine fueled with pure ethanol and methanol as an alternative fuel in terms of performance, emission and combustion characteristics. The engine tests were used an air-cooled and single-cylinder small SI engine. The engine has been set to three different ignition timing/advance (IT), compression ratio (CR) and air excess coefficient (AEC), and tested in varied combinations. In a total of eighty-one different test conditions, the engine was operated at the full-throttle opening and at engine speed at 2400 rpm with test fuels, and then performance emission and combustion data were obtained. The optimal operating parameters are determined with a multi-criteria decision-making method (MCDM) using a total of seven hundred twenty-nine experimental data. For this purpose, SWARA-ARAS (Step-wise Weight Assessment Ratio Analysis-Additive Ratio Assessment) hybrid method is preferred. According to the results, the optimum working parameters were found to be 9.0:1 of CR, 1.1 of AEC, and 20 degrees crankshaft angle (CA) of IT in the use of pure methanol fuel. In addition, the top ten rankings entering the operating parameters are presented in the article. (C) 2020 Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    Investigation of performance, combustion and emission characteristics in a diesel engine fueled with methanol/ethanol/nHeptane/diesel blends
    (2022-10-01) VARGÜN, MUSTAFA; SAYIN, CENK; YILMAZ, İLKER TURGUT; Vargün M., Yılmaz İ. T., Sayın C.
    One of the important reasons of exhaust emissions harmful to the environment and human health is the use of fossil fuels in internal combustion engines as energy resources. In this study, in order to research for cleaner fuel resources and to reduce dependence on fossil fuels, 20% methanol, ethanol and n-heptane fuels added by volume to fossil-based diesel fuel. The effects on engine performance, combustion and exhaust emission characteristics were investigated in a diesel engine with a 4-cylinder common rail injection system, at different engine loads (40 Nm and 80 Nm) and different engine speeds (1500 rpm, 1600 rpm, 1700 rpm and 1800 rpm). The maximum brake thermal efficiency (BTE) value was obtained as 43% with diesel-methanol (M20) mixed fuel at 1800 rpm at 80 Nm engine load. Brake specific fuel consumption (BSFC) values improved in all fuel types with the increase in engine load. In all test conditions, the highest maximum cylinder gas pressure (CPmax) value was obtained with M20 fuel as 114.3 bar, while the highest cumulative heat release (CHRmax) value was determined as 811.7 J with diesel-nheptane (H20) fuel. Compared to diesel fuel (D100), the use of alcohol-diesel fuel mixtures resulted in longer ignition delay (ID) and shortened combustion duration (CD). In general, a significant reduction in carbon dioxide (CO2) emissions has been observed with the use of blended fuels. As a result of the increase in engine the load, a decrease in HC emissions was observed for all test fuels. When compared to D100 fuel, oxygen (O-2) and nitrogen oxide (NO) emissions were increased with the use of diesel-methanol (M20) and diesel-ethanol (E20) fuels, while O-2\ and NO emissions were decreased with the use of diesel-nheptane fuel. (C) 2022 Elsevier Ltd. All rights reserved.
  • Publication
    Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine
    (PERGAMON-ELSEVIER SCIENCE LTD, 2009) SAYIN, CENK; Sayin, Cenk; Canakci, Mustafa
    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 degrees, 24 degrees, 27 degrees, 30 degrees and 33 degrees CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NOx and CO2 increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 degrees CA BTDC), NOx and CO2 emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 degrees and 24 degrees CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 degrees and 33 degrees CA BTDC) decreasing HC and CO emissions diminished, and NOx and CO2 emissions boosted. in terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads. (C) 2008 Elsevier Ltd. All rights reserved.
  • Publication
    Comparison of performance and combustion parameters in a heavy-duty diesel engine fueled with iso-butanol/diesel fuel blends
    (SAGE PUBLICATIONS INC, 2011) SAYIN, CENK; Ozsezen, Ahmet Necati; Turkcan, All; Sayin, Cenk; Canakci, Mustafa
    This study discusses the suitability of iso-butanol/diesel fuel blends as an alternative fuel and determines their effects on the performance and combustion characteristics of a heavy-duty diesel engine. For this purpose, various iso-butanol/diesel fuel blends containing 5%, 10% and 15% iso-butanol were prepared in volume basis and tested in a turbo-charged, six-cylinder direct injection diesel engine at the speed of 1400 rpm and three different loads (150, 300 and 450 Nm). The results indicate that when the test engine was fueled with the iso-butanol/diesel fuel blends, the brake thermal efficiency decreased, while the brake specific fuel consumption increased with proportion to using conventional diesel fuel. When iso-butanol/diesel fuel blends were used, the heat release rate; the peak cylinder gas pressure slightly increased compared to the neat diesel fuel use. Although the iso-butanol/diesel fuel blends have poor performance values at partial engine loads, their fuel properties affected the combustion and injection characteristics. They caused reductions in CO, NOx emissions and smoke opacity. However, unburned HC emission slightly increased.