Person: SAYIN, CENK
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SAYIN
First Name
CENK
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method(MDPI, 2018-05-15) SAYIN, CENK; Erdogan, Sinan; Sayin, CenkIn recent years, in order to increase the quality of life of people, energy usage has become very important. Researchers are constantly searching for new sources of energy due to increased energy demand. Engine tests are being conducted to investigate the feasibility of the new sources of energy such as alternative fuels. In the engine tests, engine performance, combustion characteristics and exhaust emissions are evaluated by obtaining the results. The effect of newly developed fuels on engine lifetime, safe transport and storage are also examined for fuel availability. In addition, the potential and the price of fuels are important in terms of sustainability. In these studies, laboratory environments are needed for experimental setups. It is difficult to determine the availability of the most suitable alternative fuel since numerous results are obtained in the engine tests and studies. This integrated model provides a great advantage in terms of time and cost. The physical and chemical properties of the fuel affect experimental results such as engine performance, combustion, and exhaust emission. The suggested model can be making the most efficient and eco-friendly fuel choice without the need for experimental studies by using physical and chemical properties of the fuel. It also can offer the best fuel for cost, safety and maintenance processes. In this study, animal fat biodiesel derived from waste animal fats and vegetable oil biodiesel produced from aspir-canola oils were investigated. Biodiesel fuels are mixed with diesel at 5%, 20%, and 50%, and nine different fuels prepared with three pure fuels, and six different fuel blends are compared. Before using these fuels in an experimental study, estimates are made about which fuels may be more advantageous in terms of many criteria. In the process, nine varied fuel specifications are taken as references such as calorific value, cetane number, oxygen content rate, fuel price, flash point, viscosity, lubricity, iodine number and water content. The criteria weights are determined with SWARA (Step-Wise Weight Assessment Ratio Analysis) from multi-criteria decision-making models, and MULTIMOORA (Multi-Objective Optimization on the basis of Ratio Analysis) is ranked according to fuels' characteristics from the best to the worst. While theoretically, the best fuel is ultimately VOB20, VOB50 and AFB20 were selected as the second fuel and the third fuel.Publication Open Access Investigation of performance, combustion and emission characteristics in a diesel engine fueled with methanol/ethanol/nHeptane/diesel blends(2022-10-01) VARGÜN, MUSTAFA; SAYIN, CENK; YILMAZ, İLKER TURGUT; Vargün M., Yılmaz İ. T., Sayın C.One of the important reasons of exhaust emissions harmful to the environment and human health is the use of fossil fuels in internal combustion engines as energy resources. In this study, in order to research for cleaner fuel resources and to reduce dependence on fossil fuels, 20% methanol, ethanol and n-heptane fuels added by volume to fossil-based diesel fuel. The effects on engine performance, combustion and exhaust emission characteristics were investigated in a diesel engine with a 4-cylinder common rail injection system, at different engine loads (40 Nm and 80 Nm) and different engine speeds (1500 rpm, 1600 rpm, 1700 rpm and 1800 rpm). The maximum brake thermal efficiency (BTE) value was obtained as 43% with diesel-methanol (M20) mixed fuel at 1800 rpm at 80 Nm engine load. Brake specific fuel consumption (BSFC) values improved in all fuel types with the increase in engine load. In all test conditions, the highest maximum cylinder gas pressure (CPmax) value was obtained with M20 fuel as 114.3 bar, while the highest cumulative heat release (CHRmax) value was determined as 811.7 J with diesel-nheptane (H20) fuel. Compared to diesel fuel (D100), the use of alcohol-diesel fuel mixtures resulted in longer ignition delay (ID) and shortened combustion duration (CD). In general, a significant reduction in carbon dioxide (CO2) emissions has been observed with the use of blended fuels. As a result of the increase in engine the load, a decrease in HC emissions was observed for all test fuels. When compared to D100 fuel, oxygen (O-2) and nitrogen oxide (NO) emissions were increased with the use of diesel-methanol (M20) and diesel-ethanol (E20) fuels, while O-2\ and NO emissions were decreased with the use of diesel-nheptane fuel. (C) 2022 Elsevier Ltd. All rights reserved.