Person:
YILMAZ, BETÜL

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

YILMAZ

First Name

BETÜL

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis
    (ELSEVIER SCIENCE BV, 2014) SÖZEN, AHMET ERDİ; Sozen, Erdi; Karademir, Betul; Yazgan, Burak; Bozaykut, Perinur; Ozer, Nesrin Kartal
    Atherosclerosis and its complications are major causes of death all over the world. One of the major risks of atherosclerosis is hypercholesterolemia. During atherosclerosis, oxidized low density lipoprotein (oxLDL) regulates CD36-mediated activation of c-jun amino terminal kinase-1 (JNK1) and modulates matrix metalloproteinase (MMP) induction which stimulates inflammation with an invasion of monocytes. Additionally, inhibition of proteasome leads to an accumulation of c-jun and phosphorylated c-jun and activation of activator protein-1 (AP-1) related increase of MMP expression. We have previously reported a significant increase in cluster of differentiation 36 (CD36) mRNA levels in hypercholesterolemic rabbits and shown that vitamin E treatment prevented the cholesterol induced increase in CD36 mRNA expression. In the present study, our aim is to identify the signaling molecules/transcription factors involved in the progression of atherosclerosis following CD36 activation in an in vivo model of hypercholesterolemic (induced by 2% cholesterol containing diet) rabbits. In this direction, proteasomal activities by fluorometry and c-jun, phospo c-jun, JNK1, MMP-9 expressions by quantitative RT-PCR and immunoblotting were tested in aortic tissues. The effects of vitamin E on these changes were also investigated in this model. As a result, c-jun was phosphorylated following decreased proteasomal degradation in hypercholesterolemic group. MMP-9 expression was also increased in cholesterol group rabbits contributing to the development of atherosclerosis. In addition, vitamin E showed its effect by decreasing MMP-9 levels and phosphorylation of c-jun. (C) 2014 The Authors. Published by Elsevier B.V.
  • PublicationOpen Access
    HSP70 Inhibition Leads to the Activation of Proteasomal System under Mild Hyperthermia Conditions in Young and Senescent Fibroblasts
    (HINDAWI LTD, 2020-02-28) SÖZEN, AHMET ERDİ; Bozaykut, Perinur; Sozen, Erdi; Kaga, Elif; Ece, Asli; Ozaltin, Esra; Bergquist, Jonas; Ozer, Nesrin Kartal; Yilmaz, Betul Karademir
    Aging has been characterized with the accumulation of oxidized proteins, as a consequence of progressive decline in proteostasis capacity. Among others, proteasomal system is an efficient protein turnover complex to avoid aggregation of oxidized proteins. Heat shock protein 70 (HSP70) is another critical player that is involved in some key processes including the correct folding of misfolded proteins and targeting aggregated proteins to the proteasome for rapid degradation. The aim of this study was to determine the role of proteasomal system and heat shock proteins to maintain proteome balance during replicative senescence in mild hyperthermia conditions. Our results demonstrated that HSP40/70 machinery is induced by mild hyperthermia conditions independent from senescence conditions. Since HSP70 is largely responsible for the rapidly inducible cell protection following hyperthermia, the activation of heat shock response resulted in the elevation of HSP40/70 expressions as well as the proteasome activity. Interestingly, when HSP70 expression was inhibited, increased proteasomal activation was shown to be responsive to mild hyperthermia. Since HSP70 is involved in various stress-related pathways such as oxidative and endoplasmic reticulum stress, depletion of HSP70 expression may induce proteasomal degradation to maintain proteome balance of the cell. Thus, our data suggests that in mild heat stress conditions, molecular chaperone HSP70 plays an important role to avoid protein oxidation and aggregation; however, activities of proteasomal system are induced when HSP70 expression is depleted.