Person: YILMAZ GÖLER, AYŞE MİNE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YILMAZ GÖLER
First Name
AYŞE MİNE
Name
9 results
Search Results
Now showing 1 - 9 of 9
Publication Open Access Cytotoxicity of Different Nano Composite Resins on Human Gingival and Periodontal Ligament Fibroblast Cell Lines: An In Vitro Study(MDPI, 2020-03-01) YILMAZ GÖLER, AYŞE MİNE; Kavuncu, Gamze; Yilmaz, Ayse Mine; Yilmaz, Betul Karademir; Atali, Pinar Yilmaz; Altunok, Elif Cigdem; Kuru, Leyla; Agrali, Omer BirkanThe aim of this study is to determine the cytotoxicity of three different nano composite resins (CRs) on human gingival fibroblast (hGF) and periodontal ligament fibroblast (hPDLF) cell lines. These CRs selected were nanohybrid organic monomer-based Admira Fusion (AF), nanohybrid Bis-(acryloyloxymethyl) tricyclo [5.2.1.0.sup.2,6] decane-based Charisma Topaz (CT), and supra nano filled resin-based Estelite Quick Sigma (EQS). MTT assay was performed to assess the cytotoxicity of CRs at 24 h and one week. AF and EQS applied on hGF cells at 24 h and one week demonstrated similar cytotoxic outcomes. Cytotoxicity of CT on hGF cells at one week was higher than 24 h (p = 0.04). Cytotoxicity of CT on hGF cells was higher at 24 h (p = 0.002) and one week (p = 0.009) compared to control. All composites showed higher cytotoxicity on hPDLF cells at one week than the 24 h (AF; p = 0.02, CT; p = 0.02, EQS; p = 0.04). AF and EQS demonstrated lower cytotoxicity on hPDLF cells than the control group at 24 h (AF; p = 0.01, EQS; p = 0.001). CT was found more cytotoxic on hPDLF cells than the control (p = 0.01) and EQS group (p = 0.008) at one week. The cytotoxicity of CRs on hGF and hPDLF cells vary, according to the type of composites, cell types, and exposure time.Publication Metadata only Combination of proteasome inhibitors with temozolomide to increase the anti-tumor effect in 3D culture model of glioblastoma(ELSEVIER SCIENCE INC, 2018) YILMAZ GÖLER, AYŞE MİNE; Unal, Semra; Gokce, Tilbe; Arslan, Sema; Yilmaz, Ayse Mine; Gunduz, Oguzhan; Karademir, BetulPublication Open Access Exploring the anticancer effects of brominated plastoquinone analogs with promising cytotoxic activity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction(2022-06-01) YILMAZ GÖLER, AYŞE MİNE; YILMAZ, BETÜL; Jannuzzı A. T., Yılmaz Göler A. M., Bayrak N., Yıldız M., Yıldırım H., Yılmaz B., Shilkar D., Jayaprakash Venkatesan R., Jayaprakash V., Tuyun A. F.Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4) cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested cell lines, with GI50values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs) obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism, and Excretion (ADME) profile, and an in silico simulation predicted a possibleBrPQ5interaction with proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity ofBrPQ5was assessed, and IC50values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer, HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7 was the most affected cell line, and the effects ofBrPQ5on cell proliferation, cell cycle, oxidative stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7 cells. The in vitro assay results showed thatBrPQ5caused cytotoxicity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. However,BrPQ5did not inhibit the catalytic activity of the proteasome. These results provide valuable insights for further discovery of novel antiproliferative agents.Publication Open Access Higher proteotoxic stress rather than mitochondrial damage is involved in higher neurotoxicity of bortezomib compared to carfilzomib(ELSEVIER, 2020-05) YILMAZ GÖLER, AYŞE MİNE; Jannuzzi, Ayse Tarbin; Arslan, Sema; Yilmaz, Ayse Mine; Sari, Gulce; Beklen, Hande; Mendez, Lucia; Fedorova, Maria; Arga, Kazim Yalcin; Yilmaz, Betul Karademir; Alpertunga, BuketProteasome inhibitors have great success for their therapeutic potential against hematologic malignancies. First generation proteasome inhibitor bortezomib induced peripheral neuropathy is considered as a limiting factor in chemotherapy and its second-generation counterpart carfilzomib is associated with lower rates of neurotoxicity. The mitochondrial toxicity (mitotoxicity) hypothesis arises from studies with animal models of bortezomib induced peripheral neuropathy. However, molecular mechanisms are not fully elucidated and the role of mitotoxicity in bortezomib and carfilzomib induced neurotoxicity has not been investigated comparatively. Herein, we characterized the neurotoxic effects of bortezomib and carfilzomib at the molecular level in human neuronal cells using LC-MS/MS analysis, flow cytometry, RT-qPCR, confocal microscopy and western blotting. We showed that bortezomib and carfilzomib affected the human neuronal proteome differently, and bortezomib caused higher proteotoxic stress via protein oxidation, protein K48-ubiquitination, heat shock protein expression up-regulation and reduction of mitochondria membrane potential. Bortezomib and carfilzomib did not affect the gene expression levels related to mitochondrial dynamics (optic atrophy 1; OPA1, mitofusin 1; MFN1, mitofusin 2; MFN2, fission 1; FIS1, dynamin-related protein 1; DRP1) and overall mitophagy rate whereas, PINK1/Parkin mediated mitophagy gene expressions were altered with both drugs. Bortezomib and carfilzomib caused downregulation of the contents of mitochondrial oxidative phosphorylation complexes, voltage-dependent anion channel 1 (VDAC1) and uncoupling protein 2 (UCP2) similarly. Our findings suggest that, both drugs induce mitotoxicity besides proteotoxic stress in human neuronal cells and the higher incidence of neurotoxicity with bortezomib than carfilzomib is not directly related to mitochondrial pathways.Publication Metadata only Proteasomal degradation of TP53INP1 and their relation to methotrexate treatment in prostate cancer cells(ELSEVIER SCIENCE INC, 2016) YILMAZ GÖLER, AYŞE MİNE; Cinel, Ali Emin; Kaplan, Gulce Sari; Yilmaz, Ayse Mine; Karademir, BetulPublication Metadata only Chemotherapy Resistance: The role of proteasomal degradation and heat shock response(ELSEVIER SCIENCE INC, 2015) ŞAHİN, ALİ; Karademir, Betul; Sozen, Erdi; Bozaykut, Perinur; Altundag, Ergul Mutlu; Yilmaz, Ayse Mine; Sahin, Ali; Corek, Ceyda; Sari, Gulce; Ozer, Nesrin KartalPublication Metadata only Combination of second-generation proteasome inhibitor carfilzomib with bortezomib in four different breast cancer cell lin(2022-01-01) YILMAZ GÖLER, AYŞE MİNE; ŞAHİN, ALİ; YILMAZ, BETÜL; Altundag E. M., Yilmaz A. M., Sahin A., Yilmaz B.Background: Proteasome inhibitors target different pathways in cells and therefore are promising drugs in cancer therapy. The use of these inhibitors is approved mainly in hematological cancers, and recently many clinical trials and preclinical studies have been conducted on efficacy in solid tumors. Carfilzomib is a second-generation inhibitor and was developed to decrease the side effects of bortezomib. Although there are many valid therapies for breast cancer, resistance and recurrence are inevitable in many cases and the proteasomal system plays an important role in related pathways. Objective: This study is a preliminary work to evaluate the combined effects of bortezomib and carfilzomib in four different breast cancer cells. Methods: MDA-MB-231, MCF-7, UACC-2087, and SKBR-3 cell lines were used. Cell viability was determined using bortezomib and carfilzomib alone and in combination. Combination effect values were determined using the Chou-Talalay method. Apoptosis, proteasome activity, cleaved PARP, and HSP70 expressions were analyzed in the determined doses. Results: The response to the combination of the two inhibitors was different in four cell lines. Apoptosis was significantly higher in combination groups compared to carfilzomib in three cell lines except for SKBR-3, and higher in the combination group compared to bortezomib only in UACC-2087. Combination decreased cleaved PARP levels in MDA-MB-231 and MCF-7 and increased SKBR-3 compared to bortezomib. HSP70 levels decreased in combination with UACC-2087 and SKBR-3 compared to carfilzomib. Conclusion: Taken together, the combination of the two inhibitors was more apoptotic compared to carfilzomib and apoptosis was higher only in UACC-2087 compared to bortezomib. This apoptosis data can not be directly correlated to the degree of proteasome inhibition, PARP cleavage, and HSP70 response.Publication Open Access Quercetin-Induced Cell Death in Human Papillary Thyroid Cancer (B-CPAP) Cells(HINDAWI LTD, 2016) YALÇIN, AHMET SUHA; Altundag, Ergul Mutlu; Kasaci, Tolga; Yilmaz, Ayse Mine; Karademir, Betul; Kocturk, Semra; Taga, Yavuz; Yalcin, A. SuhaIn this study, we have investigated the antiproliferative effect of quercetin on human papillary thyroid cancer cells and determined the apoptotic mechanisms underlying its actions. We have used different concentrations of quercetin to induce apoptosis and measured cell viability. Apoptosis and cell cycle analysis was determined by flow cytometry using Annexin V and propidium iodide. Finally, we have measured changes in caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) protein expression levels as hallmarks of apoptosis and Hsp90 protein expression level as a marker of proteasome activity in treated and control cells. Quercetin treatment of human papillary thyroid cancer cells resulted in decreased cell proliferation and increased rate of apoptosis by caspase activation. Furthermore, it was demonstrated that quercetin induces cancer cell apoptosis by downregulating the levels of Hsp90. In conclusion, we have shown that quercetin induces downregulation of Hsp90 expression that may be involved in the decrease of chymotrypsin-like proteasome activity which, in order, induces inhibition of growth and causes cell death in thyroid cancer cells. Thus, quercetin appears to be a promising candidate drug for Hsp90 downregulation and apoptosis of thyroid cancer cells.Publication Metadata only Enzimatik aktivite analizleri: kaspazlar ve proteazom(Manisa Celal bayar Üniversitesi Basımevi, 2022-09-01) YILMAZ GÖLER, AYŞE MİNE; YILMAZ, BETÜL; Yılmaz Göler A. M., Yılmaz B.