Person: YÜKSEL, MERAL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YÜKSEL
First Name
MERAL
Name
9 results
Search Results
Now showing 1 - 9 of 9
Publication Metadata only Apocynin attenuates testicular ischemia-reperfusion injury in rats(W B SAUNDERS CO-ELSEVIER INC, 2015) ŞİMŞEK, FERRUH; Sener, T. Emre; Yuksel, Meral; Ozyilmaz-Yay, Nagehan; Ercan, Feriha; Akbal, Cem; Simsek, Ferruh; Sener, GokselObjective: This study was designed to examine the possible protective effect of apocynin, a NADPH oxidase inhibitor, against torsion/detorsion (T/D) induced ischemia/reperfusion (I/R) injury in testis. Methods: Male Wistar albino rats were divided into sham-operated control, and either vehicle, apocynin 20 mg/kg-or apocynin 50 mg/kg-treated T/D groups. In order to induce I/R injury, left testis was rotated 720 degrees clockwise for 4 hours (torsion) and then allowed reperfusion (detorsion) for 4 hours. Left orchiectomy was done for the measurement of tissue malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) activity, and luminol, lucigenin, nitric oxide (NO) and peroxynitrite chemiluminescences (CL). Testicular morphology was examined by light microscopy. Results: I/R caused significant increases in tissue luminol, lucigenin, nitric oxide and peroxynitrite CL demonstrating increased reactive oxygen and nitrogen metabolites. As a result of increased oxidative stress tissue MPO activity, MDA levels were increased and antioxidant GSH was decreased. On the other hand, apocynin treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by I/R. According to data, although lower dose of apocynin tended to reverse the biochemical parameters, high dose of apocynin provides better protection since values were closer to the control levels. Conclusion: Findings of the present study suggest that NADPH oxidase inhibitor apocynin by inhibiting free radical generation and increasing antioxidant defense exerts protective effects on testicular tissues against I/R. The protection with apocynin was more pronounced with high dose. (C) 2015 Elsevier Inc. All rights reserved.Publication Metadata only THERAPEUTIC POTENTIAL OF MYRTUS COMMUNIS SUBSP COMMUNIS EXTRACT AGAINST ACETIC ACID-INDUCED COLONIC INFLAMMATION IN RATS(WILEY, 2017) ŞEN, ALİ; Sen, Ali; Yuksel, Meral; Bulut, Gizem; Bitis, Leyla; Ercan, Feriha; Ozyilmaz-Yay, Nagehan; Akbulut, Ozben; Cobanoglu, Hamit; Ozkan, Sevil; Sener, GokselThe aim of this study was to evaluate the effect of ethanol extract from leaves of Myrtus communis subsp. communis (MC) on acetic acid (AA)-induced ulcerative colitis in rats. On the fourth day of colitis induction, all rats were decapitated. Colitis was assessed by macroscopic and microscopic scores and by measuring malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, luminol, lucigenin, nitric oxid and peroxynitrite chemiluminescence (CL). Colitis caused significant increases in the colonic MDA levels, MPO activity, CL values, macroscopic and microscopic damage scores along with significant decrease in tissue GSH level. However, treatment with MC extract reversed all these biochemical indices, as well as histopathological alterations induced by AA with the protective effects being similar to that of sulphasalazine treatment. The study showed that MC extract could alleviate colitis in rats and can be considered an alternative therapeutic approach for management of inflammatory bowel diseases (IBD).Publication Metadata only Protective effects of Ginkgo biloba against acetaminophen-induced toxicity in mice(SPRINGER, 2006) ERCAN, FERİHA; Sener, G; Omurtag, GZ; Sehirli, O; Tozan, A; Yuksel, M; Ercan, F; Gedik, NBackground: The analgesic acetaminophen (AAP) causes a potentially fatal, hepatic centrilobular necrosis when taken in overdose. It was reported that these toxic effects of AAP are due to oxidative reactions that take place during its metabolism. Objective: In this study, we aimed to investigate the possible beneficial effect of Ginkgo biloba (EGb), an antioxidant agent, against AAP toxicity in mice. Methods: Balb/c mice were injected i.p. with: (1) vehicle, control (C) group; (2) a single dose of 50 mg/kg Ginkgo biloba extract, EGb group; (3) a single dose of 900 mg/kg i.p. acetaminophen, AAP group, and (4) EGb, in a dose of 50 mg/kg after AAP injection, AAP + EGb group. Serum ALT, AST, and tumor necrosis factor-alpha (TNF-alpha) levels in blood and glutathione (GSH), malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and collagen contents in liver tissues were measured. Formation of reactive oxygen species in hepatic tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lusigenin probe. Tissues were also examined microscopically. Results: ALT, AST levels, and TNF-alpha were increased significantly (p < 0.001) after AAP treatment, and reduced with EGb. Acetaminophen caused a significant (p < 0.05-0.001) decrease in GSH levels while MDA levels and MPO activity were increased (p < 0.001) in liver tissues. These changes were reversed by EGb treatment. Furthermore, luminol and lusigenin CL levels in the AAP group increased dramatically compared to control and reduced by EGb treatment (p < 0.01). Conclusion: Our results implicate that AAP causes oxidative damage in hepatic tissues and Ginkgo biloba extract, by its antioxidant effects protects the tissues. Therefore, its therapeutic role as a tissue injury-limiting agent must be further elucidated in drug-induced oxidative damage.Publication Metadata only Estrogen Protects against Oxidative Multiorgan Damage in Rats with Chronic Renal Failure(TAYLOR & FRANCIS LTD, 2009) YEGEN, BERRAK; Kasimay, Oezguer; Sener, Goeksel; Cakir, Baris; Yueksel, Meral; Cetinel, Sule; Contuk, Gazi; Yegen, Berrak C.The impact of sex dimorphism on chronic renal failure (CRF)-induced oxidative multiorgan damage and the effects of estradiol (E-2) loss and E-2 supplementation on the progress of CRF were studied. Sprague-Dawley rats underwent 5/6 nephrectomy (CRF), and a group of female rats had bilateral ovariectomy (OVX), while the sham-operated rats had no nephrectomy or OVX. Rats received either estradiol propionate (50 mu g/kg/day) or vehicle for six weeks. Serum BUN levels were elevated in both male and female CRF groups treated with vehicle, while creatinine level was not significantly changed in the female CRF group. CRF-induced elevation in serum TNF-alpha of male rats was abolished when the animals were treated with E-2, while OVX exaggerated TNF-alpha response. In OVX and male rats with CRF, E-2 treatment reversed the malondialdehyde elevations in all the studied tissues (kidney, heart, lung, ileum, brain, liver, and gastrocnemius muscle), while depletion of glutathione in these tissues was prevented by E-2 treatment. Similarly, increased levels of myeloperoxidase activity, lucigenin chemiluminescence, and collagen in most of the tissues were reversed by E-2 treatment. The findings show that the extent of tissue injuries was relatively less in females, while ovariectomy exacerbated all the indices of oxidative injury. Moreover, the administration of E-2, with its potent anti-oxidant and anti-inflammatory effects, markedly improved CRF-induced systemic inflammatory outcomes in both male and female rats by depressing tissue neutrophil infiltration and modulating the release of inflammatory cytokines.Publication Metadata only The protective effect of oxytocin on renal ischemia/reperfusion injury in rats(ELSEVIER SCIENCE BV, 2007) YEGEN, BERRAK; Tugtepe, Halil; Sener, Goksel; Biyikli, Nese Karaaslan; Yuksel, Meral; Cetinel, Sule; Gedik, Nursal; Yegen, Berrak C.Aim: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. Materials and methods: Male Wistar albino rats (250-300 g) were unilaterally nephrectornized, and subjected to 45 min of renal pedicle occlusion followed by 6 It of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. Results: The results revealed that I/R injury increased (p < 0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to l/R injury were attenuated by OT treatment (P < 0.05-0.001). Conclusions: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage. (c) 2006 Elsevier B.V. All rights reserved.Publication Metadata only Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats(KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, GokselBackground/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.Publication Metadata only The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage(SPRINGER WIEN, 2011) YEGEN, BERRAK; Ersahin, Mehmet; Toklu, Hale Z.; Akakin, Dilek; Yuksel, Meral; Yegen, Berrak C.; Sener, GokselThe aim of the study was to investigate the putative neuroprotective effect of Nigella sativa oil (NSO) treatment against subarachnoid hemorrhage (SAH) in rats. To induce SAH, rats were injected with 0.3 ml blood into their cisterna magna. Male Wistar albino rats were divided as control, vehicle-treated SAH, and NSO-treated (0.2 ml/kg, intraperitoneally) SAH groups. Forty-eight hours after SAH induction, neurological examination scores were recorded and the rats were decapitated. Brain tissue samples were taken for blood brain barrier permeability, brain water content, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+-K+-ATPase activities. On the second day of SAH induction, neurological examination scores were increased in SAH groups, while SAH caused significant decreases in brain GSH content and Na+-K+-ATPase activity, which were accompanied with significant increases in MDA levels and MPO activity. The histological observation showed vasospasm of the basillary artery. On the other hand, NSO treatment markedly improved the neurological scores while all oxidant responses were prevented, implicating that NSO treatment may be of therapeutic use in preventing oxidative stress due to SAH.Publication Metadata only Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury(ELSEVIER SCI LTD, 2007) ERCAN, FERİHA; Toklu, Hale Z.; Tunah-Akbay, Tuba; Erkani, Gozde; Yuksel, Meral; Ercan, Feriha; Sener, GokselBackground: Despite recent advances, severe burn is one of the most common problems faced in the emergency room. Major thermal injury induces the activation of an inflammatory cascade resulting in local tissue damage, to contribute to the development of subsequent damage of multiple organs distant from the original burn wound. Objective: Silymarin, the major component of milk thistle has been shown to have antioxidant properties. In the present study, we investigated the putative antioxidant effect of local or systemic silymarin treatment on burn-induced oxidative tissue injury. Methods: Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce burn. Silymarin either locally (30 mg/kg) applied on 4 cm(2) area or locally + systemically (50 mg/kg, p.o.) was administered after the burn and repeated twice daily. Rats were decapitated 48 h after injury and blood was collected for tumor necrosis factor-a (TNF-alpha) and lactate dehydrogenase (LDH) activity. In skin tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and luminol-lucigenin chemiluminescense (CL) were measured in addition to the histological evaluation. Results: Burn caused a significant increase in TNF-a and LDH levels. MDA levels were increased and GSH levels were decreased in the skin at 48 h after-burn. Both local and systemic silymarin treatments significantly reversed these parameters. The raised MPO activity and luminol-lucigenin CL were also significantly decreased. Conclusion: Results indicate that both systemic and local administration of silymarin was effective against burn-induced oxidative damage and morphological alterations in rat skin. Therefore, silymarin merits consideration as a therapeutic agent in the treatment of burns. (C) 2006 Elsevier Ltd and ISBI. All rights reserved.Publication Metadata only Ameliorative effects of riboflavin on acetic acid-induced colonic injury in rats(WILEY, 2018) ERTAŞ, BÜŞRA; Karakoyun, Berna; Ertas, Busra; Yuksel, Meral; Akakin, Dilek; Cevik, Ozge; Sener, GokselRiboflavin (RF) has been found to be a promising antioxidant and/or anti-inflammatory agent in several studies. However, the effect of RF against acetic acid (AA)-induced colonic injury is currently unknown. This study aimed to investigate the potential antioxidant and protective effects of RF in a rat model of ulcerative colitis. Starting immediately after the colitis induction (AA+RF group) or 1week before the colitis induction (RF+AA+RF group), the rats were treated with RF (25mg/kg per day; p.o.) for 3days. The control and AA groups received saline (1mL; p.o.) whereas AA+SS group (positive control) received sulfasalazine (100mg/kg per day; p.o.) for 3days. Colonic samples were taken for the biochemical and histological assessments on the third day. High damage scores, elevated tissue wet weight index (WI), tissue myeloperoxidase (MPO) activity, 8-hydroxy-2-deoxyguanosine levels and chemiluminescence values, and a pronounced decrease in antioxidant glutathione (GSH) levels of the AA group were all reversed by RF pretreatment (RF+AA+RF group) and SS treatment (AA+SS group) (P<.05-.001). Tissue WI, MPO activity and GSH levels were not statistically changed in the AA+RF group. Western blot analysis revealed that the decreased protein expressions of tissue collagen (COL) 1A1, COL3A1 and transforming growth factor-1 in the AA group were elevated in all the treatment groups (P<.05-.001). In conclusion, RF exerts both the antioxidant and anti-inflammatory effects against AA-induced colonic inflammation by suppressing neutrophil accumulation, inhibiting reactive oxidant generation, preserving endogenous glutathione, improving oxidative DNA damage and regulating inflammatory mediators, suggesting a future potential role in the treatment and prevention of ulcerative colitis.