Person:
KARAMAHMUTOĞLU, TUĞBA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

KARAMAHMUTOĞLU

First Name

TUĞBA

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Electron microscopic GABA evaluation in hippocampal mossy terminals of genetic absence epilepsy rats receiving kindling stimulations
    (2022-12-01) KAYA, ÖZLEM TUĞÇE; TURGAN AŞIK, ZEHRA NUR; KARAMAHMUTOĞLU, TUĞBA; GÜLÇEBİ İDRİZ OĞLU, MEDİNE; AKAKIN, DİLEK; ŞİRVANCI, SERAP; İmdat N. N., KAYA Ö. T., TURGAN AŞIK Z. N., ERYİĞİT KARAMAHMUTOĞLU T., GÜLÇEBİ İDRİZ OĞLU M., AKAKIN D., ONAT F., ŞİRVANCI S.
    Objective: The hypotheses related to the fact of epileptic mechanisms are mainly based on excitation-inhibition imbalance in central nervous system. GAERS (Genetic Absence Epilepsy Rats from Strasbourg) is a well-known animal model of absence epilepsy, and frequently used in experimental studies. In the present study, we aimed to examine possible morphological and gamma-aminobutyric acid (GABA) density changes in GAERS hippocampus after electrical kindling stimulations. Methods: All control and test group rats received 6 kindling stimulations. Rats were decapitated 1 h after the last stimulation. Ultrastructural GABA immunocytochemistry was used to evaluate GABA density quantitatively in mossy terminals of hippocampal CA3 region. Results: GABA levels were less in kindling groups compared to their controls, and in GAERS groups compared to Wistar groups; mitochondrial and dendritic spine area ratios were greater in GAERS groups compared to Wistar groups, although all these evaluations were statistically nonsignificant. Depletion of synaptic vesicles was evident in the mossy terminals of kindling groups. Conclusion: The reason of decreased levels of GABA found in the present study might be that GABA has been released from the synaptic pool rapidly at an early time period after the last stimulation, for compansation mechanisms. Depletion of synaptic vesicles observed in kindling groups shows that even 6 kindling stimulations have an impact of changing hippocampal morphology in trisynaptic cycle. The increased mitochondrial area in GAERS might be related to the increased mitochondrial activity. The increased dendritic spine area might be related to the increased performance of learning in GAERS. Our findings indicating that absence epilepsy and temporal lobe epilepsy have different mechanisms of epileptogenesis might be a basis for further experimental studies.
  • Publication
    Ultrastructural GABA immunogold labeling in the substantia nigra pars reticulata of kindled genetic absence epilepsy rats
    (TAYLOR & FRANCIS INC, 2020) AKAKIN, DİLEK; Sirvanci, Serap; Akakin, Dilek; Idrizoglu, Medine Gulcebi; Kaya, Ozlem Tugce; Karamahmutoglu, Tugba; Asik, Zehra Nur Turgan; Onat, Filiz
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a well-known animal model of absence epilepsy and they are resistant to electrical kindling stimulations. The present study aimed to examine possible differences in gamma-aminobutyric acid (GABA) levels and synapse counts in the substantia nigra pars reticulata anterior (SNRa) and posterior (SNRp) regions between GAERS and Wistar rats receiving kindling stimulations. Animals in the kindling group either received six stimulations in the amygdala and had grade 2 seizures or they were kindled, having grade five seizures. Rats were decapitated one hour after the last stimulation. SNR regions were obtained after vibratome sectioning of the brain tissue. GABA immunoreactivity was detected by immunogold method and synapses were counted. Sections were observed by transmission electron microscope and analyzed by Image J program. GABA density in the SNRa region of fully kindled GAERS and Wistar groups increased significantly compared to that of their corresponding grade 2 groups. The number of synapses increased significantly in kindled and grade 2 GAERS groups, compared to kindled and grade 2 Wistar groups, respectively, in the SNRa region. GABA density in the SNRp region of kindled GAERS group increased significantly compared to that of GAERS grade 2 group. In the SNRp region, both kindled and grade 2 GAERS groups were found to have increased number of synapses compared to that of GAERS control group. We concluded that both SNRa and SNRp regions may be important in modulating resistance of GAERS to kindling stimulations.
  • Publication
    Ultrastructural GABA immunocytochemistry in the mossy fiber terminals of Wistar and genetic absence epileptic rats receiving amygdaloid kindling stimulations
    (ELSEVIER, 2011) AKAKIN, DİLEK; Akakin, Dilek; Sirvanci, Serap; Gurbanova, Ayten; Aker, Rezzan; Onat, Filiz; San, Tangul
    The existence of absence epilepsy and temporal lobe epilepsy in the same patient is not common in clinical practice. The reason why both types of seizures are rarely seen in the same patient is not well understood. Therefore, we aimed to investigate kindling in a well known model of human absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS). In the present study, we analyzed whether the GABA content of GAERS that received kindling stimulations was altered in the hippocampal mossy fiber terminals compared to non-epileptic control (NEC) Wistar rats. For this purpose, we used an immunocytochemical technique at the ultrastructural level. Ultrathin sections were immunolabeled with anti-GABA antibody and transmission electron microscopy was used for the ultrastructural examination. The number of gold particles per nerve terminal was counted and the area of the nerve terminal was determined using NIH image analysis program. The GABA density was found to be higher in sham-operated GAERS than sham-operated Wistar rats. The density was increased in kindling Wistar group compared to sham-operated Wistar and kindling GAERS groups. No statistical difference was observed between sham-operated GAERS and kindling GAERS groups. The increase in GABA levels in stimulated Wistar rats may be a result of a protective mechanism. Furthermore, there may be strain differences between Wistar rats and GAERS and our findings addressing different epileptogenesis mechanisms in these strains might be a basis for future experimental studies. (C) 2010 Elsevier B.V. All rights reserved.