Person:
BİRTANE, HATİCE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

BİRTANE

First Name

HATİCE

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties
    (SPRINGER, 2022) BİRTANE, HATİCE; Cigil, Asli Beyler; Sen, Ferhat; Birtane, Hatice; Kahraman, Memet Vezir
    In this study, an antibacterial, biodegradable, biocompatible, and environmentally friendly coating was prepared with an easy technique. Accordingly, Ag nanoparticles were synthesized to provide antibacterial properties to the coating, and its surface was modified with (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) in order not to clump in the coating, to ensure homogeneous distribution on the surface, and to covalently bond to the coating. While preparing the coating formulation, polyacrylic acid (PAA), which are natural polymers, and hydroxyethyl cellulose (HEC), a derivative of cellulose, were preferred to reduce the consumption of petroleum derivatives. Then, sorbitol was used as a plasticizer. Synthesized Ag nanoparticles were included in the coating formulation containing PAA/HEC and sorbitol and thermally crosslinked at a high temperature. The size of Ag nanoparticles was analyzed by DLS while chemical composition after modification was analyzed by FTIR. Then, the chemical structure, thermal properties, surface properties, and antibacterial properties of the environmentally-friendly film were examined. It was observed that Ag nanoparticles, the surface of which were modified with GPTMS containing silicon groups, increased the thermal stability of the film, and the presence of Si and Ag on the surface was detected in SEM-EDAX measurements, and this showed that the aimed coating was obtained. It was observed that silver nanoparticles, of which their surface was modified, incorporated into the coating obtained from PAA and HEC, which are known to have no antibacterial properties, showed antibacterial activity against E. coli and S. aureus. The zone of inhibition was measured as 11 mm for both E. coli and S. aureus.
  • Publication
    Thermal and dielectric properties of flexible polyimide nanocomposites with functionalized nanodiamond and silver nanoparticles
    (2023-05-01) BİRTANE, HATİCE; MADAKBAŞ, SEYFULLAH; ESMER, KADİR; KAHRAMAN, MEMET VEZİR; Birtane H., Cigil A. B., Madakbaş S., Esmer K., Kahraman M. V.
    In the present study, amine groups were first modified to diamond and silver nanoparticles using APTMS to improve their homogeneous dispersion and compatibility in polyamic acid. Flexible polyimide nanocomposite films were successfully prepared by adding modified nanodiamond and silver nanoparticles to 4,4 \"-(1,3-phenylenedioxy) dianiline and benzophenone-3,3 \",4,4 \"-tetracarboxylic dianhydrides with different proportions. The effects of added amine-modified nanoparticles on dielectric constant and thermal stability were investigated. With SEM analysis, nanoparticles were homogeneously distributed on the polyimide surface and the presence of Si atom resulting from APTMS modification is clearly seen with the SEM-EDAX results. Considering the thermal resistance, the maximum decomposition temperature of the nano particle-free PI film was found to be 501 degrees C, while the thermal decomposition temperatures of the PI nanocomposite film that contains 1% m-Ag and the PI film that contains 5% m-ND, 502 degrees C and 505 degrees C, respectively. Also, it was seen that the dielectric constants of the prepared nanocomposite films that contain m-Ag NP decrease with increasing m-Ag NP ratio, and the dielectric constants of the films that contain m-ND increase with increasing m-ND ratio.