Person:
ÇAM, MUHAMMET EMİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÇAM

First Name

MUHAMMET EMİN

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Controlled release of donopezil-loaded polyvinyl alcohol (pva) microbubbles/nanoparticles using microfluidic t-junction device
    (2020-09-18) CESUR, SÜMEYYE; ÇAM, MUHAMMET EMİN; GÜNDÜZ, OĞUZHAN; Cesur S., Çam M. E., Gündüz O.
    Production of donepezil- loaded microbubble/nanoparticles for treatment of Alzheimer disease
  • PublicationOpen Access
    Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease
    (MDPI, 2021-11-13) ŞAHİN, ALİ; Saylam, Ezgi; Akkaya, Yigit; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Sahin, Ali; Cam, Muhammmet Emin; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Ficai, Denisa; Ficai, Anton
    Parkinson's disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson's disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson's disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100-200 mu m were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson's disease in neural tissue engineering applications.
  • PublicationOpen Access
    Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study
    (ROYAL SOC, 2020-01) AKAKIN, DİLEK; Cam, Muhammet Emin; Yildiz, Sila; Alenezi, Hussain; Cesur, Sumeyye; Ozcan, Gul Sinemcan; Erdemir, Gokce; Edirisinghe, Ursula; Akakin, Dilek; Kuruca, Durdane Serap; Kabasakal, Levent; Gunduz, Oguzhan; Edirisinghe, Mohan
    In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-gamma agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.