Person:
ÇAM, MUHAMMET EMİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÇAM

First Name

MUHAMMET EMİN

Name

Search Results

Now showing 1 - 10 of 25
  • Publication
    Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material
    (ELSEVIER, 2020) OKTAR, FAİK NÜZHET; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Topal, Fadime; Albayrak, Deniz; Guncu, Mehmet Mucahit; Cam, Muhammet Emin; Taskin, Turgut; Sasmazel, Hilal Turkoglu; Aksu, Burak; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC) blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA. The morphological and chemical composition of the resulting 3D printed composite scaffolds was determined using scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. Mechanical and thermal properties, swelling, and degradation behaviours were also investigated. The release kinetics of SC were performed. The antimicrobial analysis was evaluated against Escherichia coli and Staphylococcus aureus strains. 3D printed scaffolds have shown an excellent antibacterial effect, especially against gram-positive bacteria due to the antibacterial SC extract they contain. Furthermore, the cell viability of fibroblast (L929) cells on/within scaffolds were determined by the colourimetric MTT assay. The SA/PEG/SC scaffolds show a great promising potential candidate for diabetic wound healing and against bacterial infections. (c) 2020 Elsevier B.V. All rights reserved.
  • PublicationOpen Access
    A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches
    (ELSEVIER, 2020-10) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozkan, Ozan; Alenezi, Hussain; Sasmazel, Hilal Turkoglu; Eroglu, Mehmet Sayip; Brako, Francis; Ahmed, Jubair; Kabasakal, Levent; Ren, Guogang; Gunduz, Oguzhan; Edirisinghe, Mohan
    Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for infra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.
  • Publication
    Vitamin D-3/vitamin K-2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/beta-catenin pathway
    (ELSEVIER, 2021) ÇAM, MUHAMMET EMİN; Guler, Ece; Baripoglu, Yaren Ezgi; Alenezi, Hussain; Arikan, Ayca; Babazade, Ravana; Unal, Semra; Duruksu, Gokhan; Alfares, Fawzan S.; Yazir, Yusufhan; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Edirisinghe, Mohan; Cam, Muhammet Emin
    Vitamin D3, vitamin K2, and Mg (10%, 1.25%, and 5%, w/w, respectively)-loaded PLA (12%, w/v) (TCP (5%, w/ v))/PCL (12%, w/v) 1:1 (v/v) composite nanofibers (DKMF) were produced by electrospinning method (ES) and their osteoinductive effects were investigated in cell culture test. Neither pure nanofibers nor DKMF caused a significant cytotoxic effect in fibroblasts. The induction of the stem cell differentiation into osteogenic cells was observed in the cell culture with both DKMF and pure nanofibers, separately. Vitamin D3, vitamin K2, and magnesium demonstrated to support the osteogenic differentiation of mesenchymal stem cells by expressing Runx2, BMP2, and osteopontin and suppressing PPAR-gamma and Sox9. Therefore, the Wnt/beta-catenin signaling pathway was activated by DKMF. DKMF promoted large axonal sprouting and needle-like elongation of osteoblast cells and enhanced cellular functions such as migration, infiltration, proliferation, and differentiation after seven days of incubation using confocal laser scanning microscopy. The results showed that DKMF demonstrated sustained drug release for 144 h, tougher and stronger structure, higher tensile strength, increased water up-take capacity, decreased degradation ratio, and slightly lower Tm and Tg values compared to pure nanofibers. Consequently, DKMF is a promising treatment approach in bone tissue engineering due to its osteoinductive effects.
  • Publication
    Investigation of antioxidant and anticonvulsant activity of Hypericum triquetrifolium Turra
    (2022-01-01) ÇAM, MUHAMMET EMİN; TAŞKIN, TURGUT; Kirmizi Sonmez N. I. , Guler E., ÇAM M. E. , Ermanoglu M., Gurdal B., TAŞKIN T., Omurtag G. Z.
    © 2022 Marmara University Press.Epilepsy is a state characterized by sudden, recurrent epileptic seizures that are not initiated by an identifiable event. There are various studies has been shown that Hypericum species may be used for their anticonvulsant potentials. Besides, the relationship between anticonvulsant activity and antioxidant effect has already been shown in the literature. In the current study, H. triquetrifolium was investigated for the first time for its potential antioxidant and anticonvulsant potential using in vitro and in vivo test models. H. triquetrifolium extracts were tested with DPPH assay, FRAP assay, copper (II) ion reducing antioxidant capacity assay, and acetylcholinesterase inhibitory activity assay to understand their antioxidant potential. Especially, methanolic extract of H. triquetrifolium was shown the highest antioxidant activity. Moreover, a pentylenetetrazole (PTZ, 80 mg/kg, i.p.)-induced seizure model was conducted to analyze the anticonvulsant activities of H. triquetrifolium extracts in mice. In addition, this study revealed that H. triquetrifolium decreased the ratio of severe seizures and increased the mean onsite of mortality and survival rate in a dose-dependent manner. It is thought that the anticonvulsant effect may be either related to the antioxidant potential of H. triquetrifolium or its interference in the GABAergic system.
  • Publication
    Controlled release of donopezil-loaded polyvinyl alcohol (pva) microbubbles/nanoparticles using microfluidic t-junction device
    (2020-09-18) CESUR, SÜMEYYE; ÇAM, MUHAMMET EMİN; GÜNDÜZ, OĞUZHAN; Cesur S., Çam M. E., Gündüz O.
    Production of donepezil- loaded microbubble/nanoparticles for treatment of Alzheimer disease
  • PublicationOpen Access
    Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer's Disease-Like Alterations Induced by Type 2 Diabetes in Rats
    (MARMARA UNIV, INST HEALTH SCIENCES, 2020-06-29) ÇAM, MUHAMMET EMİN; Cam, Muhammet Emin; Taskin, Turgut
    Objective: Novel investigations have confirmed that hyperglycemia is strictly associated with the development of cognitive impairment and dementia. Sodium-dependent glucose transporter (SGLT) inhibitors, which are oral antidiabetic drugs, are currently being investigated as the medication in Alzheimer's disease (AD). In our study, Camellia sinensis (green tea), which inhibits sodium-dependent glucose transporter-1 (SGLT-1), was used in the treatment of type 2 diabetes mellitus (T2DM)-induced AD-like alterations via its antidiabetic effects. Methods: High-fat diet/streptozotocin-treated rat model was chosen to provide T2DM-induced AD-like alterations. Antidiabetic effects were evaluated with the measurement of blood glucose level (BGL), oral glucose tolerance test (OGTT), and insulin tolerance test (ITT). On the other hand, novel object recognition test (NORT), open field test (OFT), passive avoidance test (PAT), and Morris's water maze (MWM) test were performed to investigate the anti-Alzheimer's effects of C. Sinensis. Results: C. sinensis tolerated BGL for a short time but metformin, the first medication prescribed for T2DM, tolerated BGL during the test for 120 min. C. sinensis increased the number of square crosses and the frequency of grooming activity in a similar manner to metformin in OFT. C. sinensis treatment improved exploratory behavior and memory retention components in NORT. The step-through latency decreased in HFD/STZ-treated rat model but it improved with metformin and C. sinensis treatment in PAT. According to the results obtained by the MWM test, C. sinensis treatment slightly improved learning. Conclusion: C. sinensis improved short-term memory and increased the locomotor activity in rats according to the results obtained by NORT, OFT, and PA.
  • Publication
    Controlled Release of Metformin Loaded Polyvinyl Alcohol (PVA) Microbubble/Nanoparticles Using Microfluidic Device for the Treatment of Type 2 Diabetes Mellitus
    (Springer, 2020) SAYIN, FATİH SERDAR; Cesur S., Cam M.E., Sayın F.S., Su S., Gunduz O.
    Nowadays it became obvious that a relentless increase in Type 2 diabetes mellitus (T2DM), affecting the economically affluent countries, is gradually afflicting also the developing world. The currently used drugs in the treatment of T2DM have inefficient glucose control and carry serious side effects. In this study, nano-sized uniform particles were produced by microfluidic method by the explosion of microbubbles. Morphological (SEM), molecular interactions between the components (FT-IR), drug release test by UV spectroscopy measurement were carried out after production process. When microbubbles and nanoparticles, optical microscope and SEM images obtained were examined, it was observed that metformin was successfully loaded into nanoparticles. The diameter of the microbubbles and nanoparticles was 104 ± 91 µm and 116 ± 13 nm, respectively. Metformin was released in a controlled manner at pH 1.2 for 390 min. It is promising in the treatment of T2DM with the controlled release ability of metformin loaded nonoparticles. © Springer Nature Switzerland AG 2020.
  • PublicationOpen Access
    Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease
    (MDPI, 2021-11-13) ŞAHİN, ALİ; Saylam, Ezgi; Akkaya, Yigit; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Sahin, Ali; Cam, Muhammmet Emin; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Ficai, Denisa; Ficai, Anton
    Parkinson's disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson's disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson's disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100-200 mu m were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson's disease in neural tissue engineering applications.
  • PublicationOpen Access
    Effects of Cornus mas L. on lipid peroxidation and anti-oxidative enzyme activity in high fat diet fed rats
    (2023-02-01) KARĞIN, DİCLE; YAVUZ, AYŞE NUR; ÇAM, MUHAMMET EMİN; AKTAÇ, ŞULE; Karğın D., Aktaç Ş., Yavuz A. N., Çam M. E.
    Cornelian cherry (Cornus mas L.) has been used for centuries as a traditional herbal medicine in Europe and Asia. In this study, we aimed to describe the effect of Cornus mas L. (C. mas) on the activity of the antioxidant enzymes and a detoxification agent in rats fed a high-fat diet. Forty-eight adult Sprague Dawley rats were randomly assigned to six groups of eight animals each: Standard diet (Control), High Fat Diet (HFD), HFD + C. mas (200 mg/kg/day; 8 weeks), HFD + Atorvastatin (20 mg/kg/day; 8 weeks), HFD post-treated with C. mas (200 mg/kg/day; 4 weeks), HFD posttreated with Atorvastatin (20 mg/kg/day; 4 weeks). The activity of the antioxidant enzymes, Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), detoxification agent glutathione (GSH), and oxidative stress parameter thiobarbituric acid reactive substances (TBARS) were measured in the liver tissues. GPx, SOD, and CAT enzyme levels were decreased in HFD groups compared to the control (p < 0.05). However, Cornus mas L. promoted antioxidant activity by increasing GPx, SOD, and CAT enzymes and It also reduced oxidative stress (as an increase in GSH) both in the HFD + C. mas group and the HFD post-treated C. mas group compared to the HFD group (p < 0.05). Our study showed that feeding a high-fat diet increases oxidative stress. Cornus mas L treatment improves antioxidant enzyme activity and oxidative stress parameters in the liver tissues of rats.
  • PublicationOpen Access
    A Comparison Study of Fiber Diameter's Effect on Characteristic Features of Donepezil/Curcumin-Loaded Polycaprolactone/Polylactic Acid Nanofibers
    (2022-05-01) EKENTOK ATICI, CEYDA; GÜNDÜZ, OĞUZHAN; ÇAM, MUHAMMET EMİN; TATAR, ESRA; YAVUZ, AYŞE NUR; Aydin S., Kabaoglu I., Guler E., Topal F., YAVUZ A. N., EKENTOK ATICI C., TATAR E., Gurbuz F., GÜNDÜZ O., ÇAM M. E.
    Nanofibers (NFs) offer an alternative option for the treatment of Alzheimer\"s disease (AD) by addressing unmet clinical problems. In this study, anti-AD drugs, donepezil (DO) and curcumin (CUR), are loaded in polylactic acid/polycaprolactone NFs. The effect of fiber diameter on drug release behavior is mainly observed, and the successful loading of DO and CUR to NFs is demonstrated. The tensile strength of DO/CUR-loaded NFs (DNFs) with lower fiber diameter is found to be higher. The working temperature is increased by the decrease of glass transition temperature and increase of the melting temperature after loading drugs. Furthermore, the increase in the percentage of swelling and decrease in the degradation rate for NFs are observed due to the increase of fiber diameter. Encapsulation efficiency and burst release percentages for DNFs are augmented by the increase of fiber diameter. Nevertheless, DNFs exhibit a sustained drug release manner over 2 weeks. NFs do not demonstrate a toxic effect on L929 (mouse fibroblast) cells, and additionally, they promote cell proliferation. Considering all these results, it is proven that the fiber diameter affects all characteristic features of NFs, and DNFs lead to a new and promising drug delivery system for the treatment of AD.