Person:
ÇAM, MUHAMMET EMİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÇAM

First Name

MUHAMMET EMİN

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches
    (ELSEVIER, 2020-10) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozkan, Ozan; Alenezi, Hussain; Sasmazel, Hilal Turkoglu; Eroglu, Mehmet Sayip; Brako, Francis; Ahmed, Jubair; Kabasakal, Levent; Ren, Guogang; Gunduz, Oguzhan; Edirisinghe, Mohan
    Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for infra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.
  • PublicationOpen Access
    A Comparison Study of Fiber Diameter's Effect on Characteristic Features of Donepezil/Curcumin-Loaded Polycaprolactone/Polylactic Acid Nanofibers
    (2022-05-01) EKENTOK ATICI, CEYDA; GÜNDÜZ, OĞUZHAN; ÇAM, MUHAMMET EMİN; TATAR, ESRA; YAVUZ, AYŞE NUR; Aydin S., Kabaoglu I., Guler E., Topal F., YAVUZ A. N., EKENTOK ATICI C., TATAR E., Gurbuz F., GÜNDÜZ O., ÇAM M. E.
    Nanofibers (NFs) offer an alternative option for the treatment of Alzheimer\"s disease (AD) by addressing unmet clinical problems. In this study, anti-AD drugs, donepezil (DO) and curcumin (CUR), are loaded in polylactic acid/polycaprolactone NFs. The effect of fiber diameter on drug release behavior is mainly observed, and the successful loading of DO and CUR to NFs is demonstrated. The tensile strength of DO/CUR-loaded NFs (DNFs) with lower fiber diameter is found to be higher. The working temperature is increased by the decrease of glass transition temperature and increase of the melting temperature after loading drugs. Furthermore, the increase in the percentage of swelling and decrease in the degradation rate for NFs are observed due to the increase of fiber diameter. Encapsulation efficiency and burst release percentages for DNFs are augmented by the increase of fiber diameter. Nevertheless, DNFs exhibit a sustained drug release manner over 2 weeks. NFs do not demonstrate a toxic effect on L929 (mouse fibroblast) cells, and additionally, they promote cell proliferation. Considering all these results, it is proven that the fiber diameter affects all characteristic features of NFs, and DNFs lead to a new and promising drug delivery system for the treatment of AD.