Person:
ÇAM, MUHAMMET EMİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÇAM

First Name

MUHAMMET EMİN

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Camellia Sinensis Leaves Hydroalcoholic Extract Improves the Alzheimer's Disease-Like Alterations Induced by Type 2 Diabetes in Rats
    (MARMARA UNIV, INST HEALTH SCIENCES, 2020-06-29) ÇAM, MUHAMMET EMİN; Cam, Muhammet Emin; Taskin, Turgut
    Objective: Novel investigations have confirmed that hyperglycemia is strictly associated with the development of cognitive impairment and dementia. Sodium-dependent glucose transporter (SGLT) inhibitors, which are oral antidiabetic drugs, are currently being investigated as the medication in Alzheimer's disease (AD). In our study, Camellia sinensis (green tea), which inhibits sodium-dependent glucose transporter-1 (SGLT-1), was used in the treatment of type 2 diabetes mellitus (T2DM)-induced AD-like alterations via its antidiabetic effects. Methods: High-fat diet/streptozotocin-treated rat model was chosen to provide T2DM-induced AD-like alterations. Antidiabetic effects were evaluated with the measurement of blood glucose level (BGL), oral glucose tolerance test (OGTT), and insulin tolerance test (ITT). On the other hand, novel object recognition test (NORT), open field test (OFT), passive avoidance test (PAT), and Morris's water maze (MWM) test were performed to investigate the anti-Alzheimer's effects of C. Sinensis. Results: C. sinensis tolerated BGL for a short time but metformin, the first medication prescribed for T2DM, tolerated BGL during the test for 120 min. C. sinensis increased the number of square crosses and the frequency of grooming activity in a similar manner to metformin in OFT. C. sinensis treatment improved exploratory behavior and memory retention components in NORT. The step-through latency decreased in HFD/STZ-treated rat model but it improved with metformin and C. sinensis treatment in PAT. According to the results obtained by the MWM test, C. sinensis treatment slightly improved learning. Conclusion: C. sinensis improved short-term memory and increased the locomotor activity in rats according to the results obtained by NORT, OFT, and PA.
  • PublicationOpen Access
    A Comparison Study of Fiber Diameter's Effect on Characteristic Features of Donepezil/Curcumin-Loaded Polycaprolactone/Polylactic Acid Nanofibers
    (2022-05-01) EKENTOK ATICI, CEYDA; GÜNDÜZ, OĞUZHAN; ÇAM, MUHAMMET EMİN; TATAR, ESRA; YAVUZ, AYŞE NUR; Aydin S., Kabaoglu I., Guler E., Topal F., YAVUZ A. N., EKENTOK ATICI C., TATAR E., Gurbuz F., GÜNDÜZ O., ÇAM M. E.
    Nanofibers (NFs) offer an alternative option for the treatment of Alzheimer\"s disease (AD) by addressing unmet clinical problems. In this study, anti-AD drugs, donepezil (DO) and curcumin (CUR), are loaded in polylactic acid/polycaprolactone NFs. The effect of fiber diameter on drug release behavior is mainly observed, and the successful loading of DO and CUR to NFs is demonstrated. The tensile strength of DO/CUR-loaded NFs (DNFs) with lower fiber diameter is found to be higher. The working temperature is increased by the decrease of glass transition temperature and increase of the melting temperature after loading drugs. Furthermore, the increase in the percentage of swelling and decrease in the degradation rate for NFs are observed due to the increase of fiber diameter. Encapsulation efficiency and burst release percentages for DNFs are augmented by the increase of fiber diameter. Nevertheless, DNFs exhibit a sustained drug release manner over 2 weeks. NFs do not demonstrate a toxic effect on L929 (mouse fibroblast) cells, and additionally, they promote cell proliferation. Considering all these results, it is proven that the fiber diameter affects all characteristic features of NFs, and DNFs lead to a new and promising drug delivery system for the treatment of AD.
  • Publication
    Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer's disease
    (Editions de Sante, 2021) SAYIN, FATİH SERDAR; Cesur S., Cam M.E., Sayin F.S., Gunduz O.
    Nanocarriers are used to deliver bioactive substances in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD). These nanocarriers have shown many benefits over traditional treatments due to their properties such as efficient distribution and controlled release of bioactive material to the brain and loading of various drugs simultaneously. In this study, polyvinyl alcohol (PVA), PVA/bismuth ferrite (BiFeO3), and PVA/BiFeO3/donepezil hydrochloride (DO) monodisperse polymeric nanoparticles were manufactured with bursting microbubbles by a T-junction device. Here, BiFeO3 nanoparticles were synthesized by the co-precipitation method, and these magnetic nanoparticles and DO were loaded in PVA nanoparticles. Nanoparticles had a smooth and monodisperse structure according to SEM images. Also, the diameters of PVA, PVA/BiFeO3, and PVA/BiFeO3/DO nanoparticles were 148 ± 15 nm, 159 ± 21 nm, and 164 ± 12 nm, respectively. It was confirmed by X-ray diffraction and infrared spectroscopy that BiFeO3 magnetic nanoparticles and DO were successfully loaded into nanoparticles produced with PVA. There was no cytotoxic effect on healthy L929 cells for all nanoparticle samples. A systematic electrical circuit has been established to investigate the electrically controlled release behaviour of PVA/BiFeO3/DO nanoparticles at different voltages (0 V, −1.0 V, −0.5 V, +0.5 V, +1.0 V), different currents (−50 μA, −100 μA, −200 μA, and −300 μA), and 200 rpm. To apply electric stimulus increased the release except for +1.0 V and the release of DO increased at more negative voltages with a total release of 68.9% of DO after 15 stimulus with −1.0 V. Higher R2 values were obtained with the Higuchi model for almost all conditions and DO was released from nanoparticles through the non-Fickian diffusion mechanism (0.45 < n < 1). The possibility of affecting the release of DO by modifying the current and voltage in the presence of BiFeO3 leads to an immensely controllable and delicately tunable drug release for AD treatment. © 2021
  • PublicationOpen Access
    Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats
    (2023-09-15) ERTAŞ, BÜŞRA; YAVUZ, AYŞE NUR; TAŞKIN, TURGUT; ÇAM, MUHAMMET EMİN; ERTAŞ B., YAVUZ A. N., Topal F., Keles-Kaya R., Karakus Ö., Ozcan G. S., TAŞKIN T., ÇAM M. E.
    Ethnopharmacological relevance: Recent studies claim that Type-2 diabetes mellitus (T2DM) and Alzheimer\"s disease (AD) overlap in several common pathological pathways which from neuronal damage to impaired memory performance. It is known that the use of Rosa canina L. (R. canina) as medicine in folk medicine dates back to ancient times and is used in the treatment of nervous diseases in Persian medicine. However, the effect of R. canina on diabetes-related cognitive decline and memory impairment has not yet been studied. Aim of the study: We evaluated the impact of T2DM on AD-like alterations and examined the molecular mechanism of a possible effect of R. canina on cognitive alterations in diabetic rats. Materials&methods: R. canina ethanol extract was obtained by maceration method. This study was performed with male Sprague-Dawley rats fed with a high-fat diet (HFD) for 8 weeks, low-dose streptozotocin (STZ; 35 mg/kg IP) injection for 4 weeks, and R. canina (250 mg/kg; per oral) and metformin (400 mg/kg; per oral) administration for 4 weeks. The weight and blood glucose of rats were measured weekly. To evaluate glucose tolerance area under the curve (AUC) was calculated by performing an oral glucose tolerance test. Then the rats were subjected to behavioural tests, and their hippocampus and cortex tissues were obtained for biochemical and morphological analyses. Results: R. canina could manage glucose responsiveness by reducing post-prandial blood glucose levels, preventing weight loss, and raising serum insulin levels in T2DM-induced rats. Behavioural tests showed that R. canina significantly improves diabetes-related cognitive decline in recall and long-term memory. Treatment with R. canina significantly reversed HFD/STZ-induced increases in insulin, amyloid-β, amyloid precursor protein levels, and acetylcholinesterase activity in the prefrontal cortex and hippocampus. Furthermore, histological analyzes revealed the protection of R. canina against neuronal disruption in the cortical and hippocampal CA3 region caused by chronic hyperglycemia. Conclusion: Analyzed collectively, these results suggest that R. canina can correct T2DM-related cognitive decline may be attributed to insulin pathway modulation, prevention of amyloid deposition, and increased cholinergic transmission.