Person:
ÇAM, MUHAMMET EMİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÇAM

First Name

MUHAMMET EMİN

Name

Search Results

Now showing 1 - 6 of 6
  • Publication
    Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material
    (ELSEVIER, 2020) OKTAR, FAİK NÜZHET; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Topal, Fadime; Albayrak, Deniz; Guncu, Mehmet Mucahit; Cam, Muhammet Emin; Taskin, Turgut; Sasmazel, Hilal Turkoglu; Aksu, Burak; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC) blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA. The morphological and chemical composition of the resulting 3D printed composite scaffolds was determined using scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. Mechanical and thermal properties, swelling, and degradation behaviours were also investigated. The release kinetics of SC were performed. The antimicrobial analysis was evaluated against Escherichia coli and Staphylococcus aureus strains. 3D printed scaffolds have shown an excellent antibacterial effect, especially against gram-positive bacteria due to the antibacterial SC extract they contain. Furthermore, the cell viability of fibroblast (L929) cells on/within scaffolds were determined by the colourimetric MTT assay. The SA/PEG/SC scaffolds show a great promising potential candidate for diabetic wound healing and against bacterial infections. (c) 2020 Elsevier B.V. All rights reserved.
  • PublicationOpen Access
    A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches
    (ELSEVIER, 2020-10) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozkan, Ozan; Alenezi, Hussain; Sasmazel, Hilal Turkoglu; Eroglu, Mehmet Sayip; Brako, Francis; Ahmed, Jubair; Kabasakal, Levent; Ren, Guogang; Gunduz, Oguzhan; Edirisinghe, Mohan
    Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for infra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.
  • Publication
    Vitamin D-3/vitamin K-2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/beta-catenin pathway
    (ELSEVIER, 2021) ÇAM, MUHAMMET EMİN; Guler, Ece; Baripoglu, Yaren Ezgi; Alenezi, Hussain; Arikan, Ayca; Babazade, Ravana; Unal, Semra; Duruksu, Gokhan; Alfares, Fawzan S.; Yazir, Yusufhan; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Edirisinghe, Mohan; Cam, Muhammet Emin
    Vitamin D3, vitamin K2, and Mg (10%, 1.25%, and 5%, w/w, respectively)-loaded PLA (12%, w/v) (TCP (5%, w/ v))/PCL (12%, w/v) 1:1 (v/v) composite nanofibers (DKMF) were produced by electrospinning method (ES) and their osteoinductive effects were investigated in cell culture test. Neither pure nanofibers nor DKMF caused a significant cytotoxic effect in fibroblasts. The induction of the stem cell differentiation into osteogenic cells was observed in the cell culture with both DKMF and pure nanofibers, separately. Vitamin D3, vitamin K2, and magnesium demonstrated to support the osteogenic differentiation of mesenchymal stem cells by expressing Runx2, BMP2, and osteopontin and suppressing PPAR-gamma and Sox9. Therefore, the Wnt/beta-catenin signaling pathway was activated by DKMF. DKMF promoted large axonal sprouting and needle-like elongation of osteoblast cells and enhanced cellular functions such as migration, infiltration, proliferation, and differentiation after seven days of incubation using confocal laser scanning microscopy. The results showed that DKMF demonstrated sustained drug release for 144 h, tougher and stronger structure, higher tensile strength, increased water up-take capacity, decreased degradation ratio, and slightly lower Tm and Tg values compared to pure nanofibers. Consequently, DKMF is a promising treatment approach in bone tissue engineering due to its osteoinductive effects.
  • PublicationOpen Access
    A Comparison Study of Fiber Diameter's Effect on Characteristic Features of Donepezil/Curcumin-Loaded Polycaprolactone/Polylactic Acid Nanofibers
    (2022-05-01) EKENTOK ATICI, CEYDA; GÜNDÜZ, OĞUZHAN; ÇAM, MUHAMMET EMİN; TATAR, ESRA; YAVUZ, AYŞE NUR; Aydin S., Kabaoglu I., Guler E., Topal F., YAVUZ A. N., EKENTOK ATICI C., TATAR E., Gurbuz F., GÜNDÜZ O., ÇAM M. E.
    Nanofibers (NFs) offer an alternative option for the treatment of Alzheimer\"s disease (AD) by addressing unmet clinical problems. In this study, anti-AD drugs, donepezil (DO) and curcumin (CUR), are loaded in polylactic acid/polycaprolactone NFs. The effect of fiber diameter on drug release behavior is mainly observed, and the successful loading of DO and CUR to NFs is demonstrated. The tensile strength of DO/CUR-loaded NFs (DNFs) with lower fiber diameter is found to be higher. The working temperature is increased by the decrease of glass transition temperature and increase of the melting temperature after loading drugs. Furthermore, the increase in the percentage of swelling and decrease in the degradation rate for NFs are observed due to the increase of fiber diameter. Encapsulation efficiency and burst release percentages for DNFs are augmented by the increase of fiber diameter. Nevertheless, DNFs exhibit a sustained drug release manner over 2 weeks. NFs do not demonstrate a toxic effect on L929 (mouse fibroblast) cells, and additionally, they promote cell proliferation. Considering all these results, it is proven that the fiber diameter affects all characteristic features of NFs, and DNFs lead to a new and promising drug delivery system for the treatment of AD.
  • PublicationOpen Access
    Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study
    (ROYAL SOC, 2020-01) AKAKIN, DİLEK; Cam, Muhammet Emin; Yildiz, Sila; Alenezi, Hussain; Cesur, Sumeyye; Ozcan, Gul Sinemcan; Erdemir, Gokce; Edirisinghe, Ursula; Akakin, Dilek; Kuruca, Durdane Serap; Kabasakal, Levent; Gunduz, Oguzhan; Edirisinghe, Mohan
    In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-gamma agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.
  • PublicationOpen Access
    Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study
    (ELSEVIER, 2021-02) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Ertas, Busra; Alenezi, Hussain; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozcan, Gul Sinemcan; Ekentok, Ceyda; Guler, Ece; Katsakouli, Christina; Demirbas, Zehra; Akakin, Dilek; Eroglu, Mehmet Sayip; Kabasakal, Levent; Gunduz, Oguzhan; Edirisinghe, Mohan
    The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug.