Person: ALTAN, ERAY
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ALTAN
First Name
ERAY
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Marine-derived bioceramics for orthopedic, reconstructive and dental surgery applications(2022-11-01) OKTAR, FAİK NÜZHET; ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; EKREN, NAZMİ; ALTAN, ERAY; OKTAR F. N. , Unal S., GÜNDÜZ O., Ben Nissan B., Macha I. J. , Akyol S., Duta L., EKREN N., ALTAN E., YETMEZ M.Bioceramics are a fast-growing materials group, which are widely used in orthopedics, maxillofacial, dental, and reconstructive surgeries. They are produced using raw materials either from synthetic or natural sources. As naturally originated resources, the bones of sheep and cows are used after converting to calcium phosphates. Human-originated sources in the past were obtained from human cadaver bones, however now-a-days this has been discontinued. On the other hand, the \"golden standard\" in the reconstruction surgery has been using patients own bones, -i.e., autogenous bones, which heal better than other alternatives. Besides natural products, synthetic materials are produced from a range of inorganic raw and natural materials based on marine sources, such as corals, and other marine-derived materials (i.e., seashells, nacre). These are used to produce bioceramics and hence implants, devices, and bone grafts. Although during the last four decades a number of excellent books and book chapters have been published, no comprehensive review has been yet reported to cover the available marine materials and to indicate the related work and corresponding references to allow for both medical and ceramic scientists to access directly and open new avenues for further research on marine structures and their applications in orthopedic, maxillofacial, and reconstructive surgery areas. Hence, this review covers the general marine structures, their locations and availability in different countries and, current research on production methods of these unique structures that are difficult to fabricate synthetically. The authors are confident that this comprehensive review will be an excellent source not only for the ceramists, but also for the medical scientists.Publication Open Access Effects of temperature and pH on the synthesis of nanohydroxyapatite powders by chemical precipitation(2023-01-01) ALTAN, ERAY; OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; Mahmutoglu G., Topsakal A., ALTAN E., KUŞKONMAZ N., DAĞLILAR S., OKTAR F. N., Erdemir G., Kuruca S. E., AKYOL S., GÜNDÜZ O., et al.Bone tissue engineering is based on a comprehensive understanding of bone structure, bone mechanics, and biology. In order to create nanostructured hydroxyapatite powders with customized properties, many synthesis strategies such as wet chemical precipitation, sol-gel, hydrothermal, and biomimetic approaches have been intensively researched through the years. Calcium phosphate (CaP)-based ceramic nanoparticles, including hydroxyapatite (HAp), were synthesized by the chemical precipitation technique at pH ranges of 7 to 11 and different calcination temperatures of 600 to 1100 °C. The synthesized powders were characterized by several techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), and in vitro cell culture assays. The particle size analysis and zeta potential of these powders were also carried out using the dynamic light scattering (DLS) and laser Doppler electrophoresis methods. The results showed that the pH levels of 9 to 11 range and calcination temperatures of 600 to 800 °C were adequate for appropriate nanohydroxyapatite powder production using this method. The particle size of the nanohydroxyapatite was approximately 55 nm, although they were agglomerated after calcination. The biocompatibility tests demonstrated that these nanohydroxyapatite (nHAp) powders produced have appropriate cytocompatibility and can be used for bone graft production and other biomedical applications.Publication Metadata only Bioceramics(Springer, London/Berlin , 2023-09-01) ALTAN, ERAY; GÜNDÜZ, OĞUZHAN; Bedir T., Altan E., Arancı Çiftçi K., Gündüz O. (Editör); Gunduz, Oğuzhan; Egles, Christophe; Pérez, Roman A.; Ficai, Denisa; Üstündağ, Cem BulentBioceramics commonly employed materials for the restoration, replacement and recovery of unhealthy and impaired pieces of the muscle and skeletal system, as well as periodontal anomalies. According to the host tissue interactions, bioceramics can be graded as nearly bioinert, bioactive, and bioresorbable. Most of the clinical applications of bioceramics comprise orthopedic and dental surgery and also have potential in the field of tissue engineering. This chapter aims to introduce a concise and accessible overview of the past of bioceramics to the present. From bioinert to bioactive and bioabsorbable bioceramics, the classification of materials is discussed and bioceramics characteristics such as biodegradability, bioactivity, biocompatibility, porosity, mechanical and surface properties, as well as osteoconductivity and osteoinductivity emphasized in depth. Production processes of bioceramics are also considered herein. At the end of this chapter, the biomedical applications of bioceramics including orthopedic, dental, surface coatings, and bone tissue engineering, challenges, and future research expectations in the area of bioceramics are also highlighted.