Person: MERTOĞLU, BÜLENT
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
MERTOĞLU
First Name
BÜLENT
Name
33 results
Search Results
Now showing 1 - 10 of 33
Publication Metadata only Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure(AMER PHYSIOLOGICAL SOC, 2017) MERTOĞLU, BÜLENT; Bereketoglu, Ceyhun; Arga, Kazim Yalcin; Eraslan, Serpil; Mertoglu, BulentBioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S.cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; > 65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.Publication Metadata only Investigation of nitrogen converters in membrane bioreactor(TAYLOR & FRANCIS INC, 2011) MERTOĞLU, BÜLENT; Ozdemir, Burcu; Mertoglu, Bulent; Yapsakli, Kozet; Aliyazicioglu, Cigdem; Saatci, Ahmet; Yenigun, OrhanIn this study, the activity and diversity of nitrogen converters, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), ammonia-oxidizing archaea (AOA) and Anammox bacteria in a pilot-scale membrane bioreactor (MBR) were investigated and monitored using amoA and 16S rDNA-based molecular tools. The pilot-scale MBR (100 m(3)/day) was located inside the full-scale Pasakoy Advanced Wastewater Treatment Plant (WWTP), and operated for approximately 5 months without sludge purge. During 148 days of operation, volatile suspended solids (VSS) concentration increased from 2,454 mg/L to 10,855 mg/L and the average organic carbon and ammonia nitrogen removal rates were 92% and 99%, respectively. Real-time PCR results indicated that the fraction of AOB increased from 2.94% to 4.05% when VSS concentration reached to 3,750 mg/L throughout 148 days of operation. At higher VSS concentrations, the fraction of AOB declined gradually to 1.15% while the fraction of Nitrospira population was varied between 8.23 and 13.01%. However, significant change or any positive and negative correlations between VSS concentration and Nitrospira population were not observed in this period. The phylogenetic analysis revealed that MBR harbored diverse AOB community which was related to the Nitrosomonas and Nitrosospira lineage. Candidatus Nitrospira defluvii was the only detected NOB in this study.Publication Metadata only Spatial and temporal analysis of black carbon aerosols in Istanbul megacity(ELSEVIER, 2014) MERTOĞLU, BÜLENT; Ozdemir, Huseyin; Pozzoli, Luca; Kindap, Tayfun; Demir, Goksel; Mertoglu, Bulent; Mihalopoulos, Nikos; Theodosi, Christina; Kanakidou, Maria; Im, Ulas; Unal, AlperBlack carbon (BC) is an important component of particulate matter due to its effects on human health and climate. In this study, we present the first BC concentrations measured in the Istanbul megacity (similar to 15 million inhabitants). Two measurement campaigns have been conducted to measure BC and fine particulate matter (PM2.5) concentrations at four locations, characterized by different traffic densities. In the first campaign, BC daily mean concentrations have been found to be between 4 mu g/m(3) and 10 mu g/m(3). In the second campaign, BC and PM2.5 have been measured at the site with the highest traffic density for an entire year. Annually averaged BC contributes by 38 +/- 14% to the PM2.5 levels (annual average BC: 13 mu g/m(3) and PM2.5: 36 mu g/m(3)). Diurnal variations of BC concentrations followed those of traffic density (correlation coefficient of 0.87). These measurements are essential to identify the sources of BC and PM2.5 concentrations in Istanbul and develop mitigation measures. (C) 2013 Elsevier B.V. All rights reserved.Publication Metadata only Monitoring of population shifts in an enriched nitrifying system under gradually increased cadmium loading(ELSEVIER SCIENCE BV, 2008) ÇALLI, BARIŞ; Mertoglu, Bulent; Semerci, Neslihan; Guler, Nuray; Calli, Baris; Cecen, Ferhan; Saatc, Ahmet MeteThe changes in nitrifying bacterial population under cadmium loading were monitored and evaluated in a laboratory scale continuous-flow enriched nitrification system. For this purpose, the following molecular microbiological methods were used: slot-blot hybridization, denaturing gradient gel electrophoresis (DGGE), real-time PCR followed by melting curve analysis, cloning and sequence analysis. The initial cadmium concentration was incrementally increased from 1 to 10mg/l which led to a drop in ammonia removal efficiency from 99 to 10%. inhibition was recovered when cadmium loading was stopped. During the second application of cadmium. nitrifying population became more tolerant. Even at 15 mg/l Cd, only a minor inhibition was observed. To investigate the variations in ammonia and nitrite oxidizing bacteria populations in a period of 483 days, ammonia monooxygenase (amoA) and 16S rRNA genes-based molecular techniques were used. An obvious shift was experienced in the diversity of ammonia oxidizers after the first application of 10mg/l Cd. Metal-tolerant ammonia oxidizing species became dominant and the microbial diversity sharply shifted from Nitrosomonas and Nitrosococcus sp. to Nitrosospira sp. which were observed to tolerate higher cadmium loadings. This result indicated that the extent of nitrification inhibition was not only related to the metal concentration and quantity of microorganisms but also depended on the type of species. (C) 2008 Elsevier B.V. All rights reserved.Publication Metadata only Solidification/stabilization of landfill leachate concentrate using different aggregate materials(PERGAMON-ELSEVIER SCIENCE LTD, 2012) MERTOĞLU, BÜLENT; Hunce, Selda Yigit; Akgul, Deniz; Demir, Goksel; Mertoglu, BulentThe application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process. (C) 2012 Elsevier Ltd. All rights reserved.Publication Metadata only Effects of insufficient air injection on methanogenic Archaea in landfill bioreactor(ELSEVIER, 2007) ÇALLI, BARIŞ; Mertoglu, Bulent; Calli, Baris; Guler, Nuray; Inanc, Bulent; Inoue, YuzoIn this study, methanogenic Archaea diversity in an aerated landfill bioreactor filled with co-disposed incineration bottom ashes and shredded incombustible wastes was monitored and analyzed as a function of time using molecular techniques. Besides, the effects of insufficient air injection on the bioreactor performance and methanogenic diversity were evaluated thoroughly. Results indicated that rapid bio-stabilization of solid waste are possible with aerated landfill bioreactor at various oxygen and oxidation reduction potential levels. Slot-blot hybridization results of leachate samples collected from aerated landfill bioreactor showed that archaeal and bacterial activities increased as stabilization accelerated and bacterial populations constituted almost 95% of all microorganisms. The results of slot-blot hybridization and phylogenetic analysis based on 16S rRNA gene revealed that Methanobacteriales and Methanomicrobiales were dominant species at the beginning while substituted by Methanosarcina-related methanogens close to the end of the operation of bioreactor. (c) 2006 Elsevier B.V. All rights reserved.Publication Metadata only Landfill leachate management in Istanbul: applications and alternatives(PERGAMON-ELSEVIER SCIENCE LTD, 2005) ÇALLI, BARIŞ; Calli, B; Mertoglu, B; Inanc, BTreatment alternatives for Istanbul, Komurcuoda Landfill (KL) leachate that is currently transported to the nearest central wastewater treatment plant were comprehensively investigated with laboratory scale experiments. As flow rate of leachate increases parallel to increment in landfilled solid waste, an individual treatment will be needed to reduce the transportation cost and pollution load on central treatment. However, if the leachate is separately treated and discharged to a brook, in that case more stringent discharge standards will be valid and therefore advanced processes in addition to conventional ones should be included. In laboratory scale experiments, the young landfill leachate having BOD5/COD ratio above 0.6 was successfully treated with efficiencies above 90% in upflow anaerobic reactors if pH is kept below free ammonia inhibition level. Subsequently, nitrification of anaerobically treated leachate was performed with rates of about 8.5 mg NH4+-Ng(-1) VSS h(-1) and efficiencies above 99% were provided with automated pH regulation by using sodium bicarbonate. Furthermore, denitrification rates as high as 8.1 mg NOx-Ng(-1) VSS h(-1) was obtained when carbon source was externally supplied. In addition to nitrification and denitrification, air stripping and struvite precipitation were also applied to remove ammonia in leachate and in average 94% and 98% efficiencies were achieved, respectively. Finally, in average 85% of biologically inert COD was successfully removed by using either ozone or Fenton's oxidation. © 2004 Elsevier Ltd. All rights reserved.Publication Metadata only Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli(SPRINGER, 2017) SARIYAR AKBULUT, BERNA; Ayyildiz, Dilara; Arga, Kazim Yalcin; Avci, Fatma Gizem; Altinisik, Fatma Ece; Gurer, Caglayan; Toplan, Gizem Gulsoy; Kazan, Dilek; Wozny, Katharina; Bruegger, Britta; Mertoglu, Bulent; Akbulut, Berna SariyarAmong the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 mu g/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value < 0.05 and fold change > 2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.Publication Metadata only Investigating the toxic effects of nonylphenol on Saccharomyces cerevisiae(2016-07-06) BEREKETOĞLU, CEYHUN; ARĞA, KAZIM YALÇIN; MERTOĞLU, BÜLENT; BEREKETOĞLU C., ARĞA K. Y., MERTOĞLU B.Publication Metadata only Identification of nitrifiers and nitrification performance in drinking water biological activated carbon (BAC) filtration(ELSEVIER SCI LTD, 2010) MERTOĞLU, BÜLENT; Yapsakli, Kozet; Mertoglu, Bulent; Cecen, FerhanIn this study laboratory scale biological activated carbon (BAC) columns were operated with water taken from a surface water reservoir in Istanbul. The aim was to evaluate the efficiency of nitrification in columns packed with two different granular activated carbon grades (open superstructure/chemically activated and closed superstructure/steam activated carbon) and to examine the probable beneficial effect of pre-ozonation. The occurrence and diversity of ammonia-oxidizing bacteria were investigated using 16S rDNA and amoA gene based molecular techniques. Nearly complete removal of NH4+-N was achieved by nitrification in both carbon types. The nitrification efficiency did not change in columns fed with ozonated water. However, the type of feed (either raw or ozonated) played a more important role than the type of GAC with respect to the dominance of nitrifier species in BAC columns. In biofilters ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were most closely related to Nitrosomonas spp. and Nitrospira spp. as determined by cloning and slot-blot analysis, respectively. The fraction of the AOB population in the biomass was high as detected by real-time PCR. The amoA/16S rDNA ratio varied from 28.7% to 2.1% along the depth of filters. In spite of similar removal efficiencies, BAC columns fed with ozonated water harbored different types of AOB than columns that were receiving raw water. (C) 2010 Elsevier Ltd. All rights reserved.