Person:
DOĞAN, BUKET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

DOĞAN

First Name

BUKET

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Protecting android devices from malware attacks: a state-of-the-art report of concepts, modern learning models and challenges
    (2023-01-01) DOĞAN, BUKET; Bayazit E. C., Sahingoz O. K., DOĞAN B.
    Advancements in microelectronics have increased the popularity of mobile devices like cellphones, tablets, e-readers, and PDAs. Android, with its open-source platform, broad device support, customizability, and integration with the Google ecosystem, has become the leading operating system for mobile devices. While Android’s openness brings benefits, it has downsides like a lack of official support, fragmentation, complexity, and security risks if not maintained. Malware exploits these vulnerabilities for unauthorized actions and data theft. To enhance device security, static and dynamic analysis techniques can be employed. However, current attackers are becoming increasingly sophisticated, and they are employing packaging, code obfuscation, and encryption techniques to evade detection models. Researchers prefer flexible artificial intelligence methods, particularly deep learning models, for detecting and classifying malware on Android systems. In this survey study, a detailed literature review was conducted to investigate and analyze how deep learning approaches have been applied to malware detection on Android systems. The study also provides an overview of the Android architecture, datasets used for deep learning-based detection, and open issues that will be studied in the future.
  • PublicationOpen Access
    Topluluk sınıflandırma yöntemleri ve PCA kullanarak zararlı url tespiti
    (2021-12-01) ALTIKARDEŞ, ZEHRA AYSUN; DOĞAN, BUKET; Köksal K., Doğan B., Altıkardeş Z. A.
    Teknolojinin gelişmesi ve internet kullanıcı sayısındaki artışla orantılı olarak siber suçlarda da artış gözlemlenmiştir. Birçok farklı siber saldırı tekniği bulunmaktadır. Bu saldırı tekniklerinden biri olan kötü amaçlı web siteleri, siber saldırılar ve dolandırıcılık olaylarında önemli rol oynamaktadır. İnternette masum görünen bir bağlantıya tıklamak veya e-posta ve mesaj yoluyla gönderilen bir web sayfasını ziyaret etmek arka planda kimlik avı kampanyalarının başlatılmasına, kötü amaçlı yazılımların, casus yazılımların, fidye yazılımların indirilmesine ve ciddi parasal kayıplar oluşmasına yol açar. Dolayısıyla bu tehditlerin etkin bir şekilde tespit edilmesi ve önlenmesi bireyler, kurumlar ve hükümetler için oldukça önemli bir konu haline gelmiştir. Kara listeye dayalı yöntemler, kötü amaçlı URL\"leri tanımlamak için kullanılan standart yöntemlerden biridir. Ancak kara listeler hiçbir zaman kapsamlı değildir ve yeni oluşturulan URL\"leri algılama yeteneğinden yoksundur. Kara listeye dayalı yöntemlerin mevcut ihtiyacı ve eksiklikleri de göz önünde bulundurularak bu çalışmada toplulukla öğrenme yöntemleri kullanılarak bir sınıflandırma yaklaşımı önerilmiştir. Çalışmada iyi huylu ve kötü huylu URL’lerden elde edilmiş 79 sözcüksel özellik içeren Kanada Siber Güvenlik Enstitüsü\"nün URL veriseti (ISCX-URL-2016) üzerinde çalışılmıştır. Verisetinde benign, spam, phishing, malware ve defacement olmak üzere beş farklı URL türü bulunmaktadır. Toplam 7781 iyi huylu ve 28.917 tane zararlı URL kaydı üzerinde zararlı, zararsız etiketleri kullanılarak ikili sınıflandırma işlemi ve beş farklı etiket bilgisi kullanılarak çoklu sınıflandırma işlemi gerçekleştirilmiştir. Makine öğrenmesi yöntemlerinden Rastgele Orman algoritması uygulanan yöntemin başarısının sınanması için 10-katlamalı çapraz doğrulama (10-fold cross validation) ile birlikte kullanılmıştır ve 10 temel bileşen kullanılarak ikili sınıflandırma problemi için ortalama %99.42, çoklu sınıflandırma problemi için ortalama %95.68 doğruluk değeri elde edilmiştir. Böylece her gün yeni web sitelerinin katıldığı bu dinamik internet ağını kötü niyetli tasarlanmış web sitelerinden korumaya yönelik yüksek başarım oranına sahip bir model önerisi sunulmuştur.
  • PublicationOpen Access
    Deep learning based malware detection for android systems: A comparative analysis
    (2023-04-01) DOĞAN, BUKET; Bayazit E. C., Sahingoz O. K., DOĞAN B.
    Nowadays, cyber attackers focus on Android, which is the most popular open-source operating system, as main target by applying some malicious software (malware) to access users\" private information, control the device, or harm end-users. To detect Android malware, security experts have offered some learning-based models. In this study, we developed an Android malware detection system that uses different machine\deep learning models by performing both dynamic analyses, in which suspected malware is executed in a safe environment for observing its behaviours, and static analysis, which examines a malware file without any execution on the Android device. The benefits and weaknesses of these models and analyses are described in detail in this comparative study, and directions for future studies are drawn. Experimental results showed that the proposed models gave better results than those in the literature, with 0.988 accuracy for LSTM on static analysis and 0.953 accuracy for CNN-LSTM on dynamic analysis.
  • PublicationOpen Access
    A deep learning based android malware detection system with static analysis
    (2022-01-01) DOĞAN, BUKET; Bayazit E. C. , Sahingoz O. K. , DOĞAN B.
    © 2022 IEEE.In recent years, smart mobile devices have become indispensable due to the availability of office applications, the Internet, game applications, vehicle guidance or similar most of our daily lives applications in addition to traditional services such as voice calls, SMSs, and multimedia services. Due to Android\"s open source structure and easy development platforms, the number of applications on Google Play, the official Android app store increased day by day. This also brig some security related issues for the end users. The increased popularity of Android operating system on mobile devices, and the associated financial benefits attracted attackers for developing some malware for these devices, which results a significant increase in the number of Android malware applications. To detect this type of security threats, signature based detection (static detection) in generally preferred due to its easy applicability and fast identification ability. Therefore in this study it is aimed to implement an up-to-date, effective, and reliable malware detection system with the help of some deep learning algorithms. In the proposed system, RNN-based LSTM, BiLSTM and GRU algorithms are evaluated on CICInvesAndMal2019 data set which contains 8115 static features for malware detection. Experimental results show that the BiLSTM model outperforms other proposed RNN-based deep learning methods with an accuracy rate of 98.85 %.