Person: SARIYAR AKBULUT, BERNA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SARIYAR AKBULUT
First Name
BERNA
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Potentiating the activity of berberine for Staphylococcus aureus in a combinatorial treatment with thymol(ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2020) SARIYAR AKBULUT, BERNA; Aksoy, Cemile Selin; Avci, Fatma Gizem; Ugurel, Osman Mutluhan; Atas, Basak; Sayar, Nihat Alpagu; Akbulut, Berna SariyarA plethora of natural products emerges as attractive molecules in the struggle against antibiotic resistance. These molecules impose their bioactivities not only alone but also in combinations as well, which further enhances their effects. Berberine is a well-known isoquinoline alkaloid with antibacterial activity. Unfortunately, it is readily extruded, which significantly reduces its efficacy and restricts its potential. Thymol is a monoterpenic phenol that exhibits different biological activities but its major effect is observed only at relatively high concentrations, which raises concern on cytotoxicity. The aim of the study was to potentiate the antibacterial activity of berberine, in a combination treatment with thymol in the opportunistic pathogen Staphylococcus aureus and understand the antibacterial mechanism of the combination treatment. The synergism of berberine and thymol was first established by the checkerboard assay. Then the antibacterial mechanism of the synergistic combination was explored by growth curves, biofilm formation assay, SEM observation, and RNA-Seq based transcriptomic profiling. Checkerboard assay showed that 32 mu g mL(-1) berberine and 64 mu g mL(-1) thymol was a synergistic combination, both concentrations below their cytotoxicity limits for many cells. 32 mu g mL(-1) berberine and 32 mu g mL(-1) thymol was sufficient to inhibit biofilm formation. SEM images confirmed the morphological changes on the structure of combination treated cells. The major finding of the combination treatment from the transcriptomic analysis was the repression in the expression of virulence factors or genes related to virulence factors. Apart from the particular changes related to the cell envelope, the majority of expressional changes seemed to be similar to berberine-treated cells or to be resulting from general stress conditions. The findings of this work showed that when thymol was used in combination with berberine, it enhanced the antibacterial activity of berberine in a synergistic manner. Furthermore, thymol could be considered as an antivirulence agent, disarming S. aureus cells.Publication Metadata only Assessment of Berberine as a Multi-target Antimicrobial: A Multi-omics Study for Drug Discovery and Repositioning(MARY ANN LIEBERT, INC, 2014) SARIYAR AKBULUT, BERNA; Karaosmanoglu, Kubra; Sayar, Nihat Alpagu; Kurnaz, Isil Aksan; Akbulut, Berna SariyarPostgenomics drug development is undergoing major transformation in the age of multi-omics studies and drug repositioning. Rather than applications solely in personalized medicine, omics science thus additionally offers a better understanding of a broader range of drug targets and drug repositioning. Berberine is an isoquinoline alkaloid found in many medicinal plants. We report here a whole genome microarray study in tandem with proteomics techniques for mining the plethora of targets that are putatively involved in the antimicrobial activity of berberine against Escherichia coli. We found DNA replication/repair and transcription to be triggered by berberine, indicating that nucleic acids, in general, are among its targets. Our combined transcriptomics and proteomics multi-omics findings underscore that, in the presence of berberine, cell wall or cell membrane transport and motility-related functions are also specifically regulated. We further report a general decline in metabolism, as seen by repression of genes in carbohydrate and amino acid metabolism, energy production, and conversion. An involvement of multidrug efflux pumps, as well as reduced membrane permeability for developing resistance against berberine in E. coli was noted. Collectively, these findings offer original and significant leads for omics-guided drug discovery and future repositioning approaches in the postgenomics era, using berberine as a multi-omics case study.Publication Metadata only An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids(PERGAMON-ELSEVIER SCIENCE LTD, 2018) SARIYAR AKBULUT, BERNA; Avci, Fatma Gizem; Sayar, Nihat Alpagu; Akbulut, Berna SariyarPlant-derived substances have regained interest in the fight against antibiotic resistance owing to their distinct antimicrobial mechanisms and multi-target properties. With the recent advances in instrumentation and analysis techniques, OMIC approaches are extensively used for target identification and elucidation of the mechanism of phytochemicals in drug discovery. In the current study, RNA sequencing based transcriptional profiling together with global differential protein expression analysis was used to comparatively elaborate the activities and the effects of the plant alkaloids boldine, bulbocapnine, and roemerine along with the well-known antimicrobial alkaloid berberine in Bacillus subtilis cells. The transcriptomic findings were validated by qPCR. Images from scanning electron microscope were obtained to visualize the effects on the whole-cells. The results showed that among the three selected alkaloids, only roemerine possessed antibacterial activity. Unlike berberine, which is susceptible to efflux through multidrug resistance pumps, roemerine accumulated in the cells. This in turn resulted in oxidative stress and building up of reactive oxygen species, which eventually deregulated various pathways such as iron uptake. Treatment with boldine or bulbocapnine slightly affected various metabolic pathways but has not changed the growth patterns at all. (C) 2018 Elsevier Ltd. All rights reserved.