Person:
SARIYAR AKBULUT, BERNA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SARIYAR AKBULUT

First Name

BERNA

Name

Search Results

Now showing 1 - 6 of 6
  • Publication
    Potentiating the activity of berberine for Staphylococcus aureus in a combinatorial treatment with thymol
    (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2020) SARIYAR AKBULUT, BERNA; Aksoy, Cemile Selin; Avci, Fatma Gizem; Ugurel, Osman Mutluhan; Atas, Basak; Sayar, Nihat Alpagu; Akbulut, Berna Sariyar
    A plethora of natural products emerges as attractive molecules in the struggle against antibiotic resistance. These molecules impose their bioactivities not only alone but also in combinations as well, which further enhances their effects. Berberine is a well-known isoquinoline alkaloid with antibacterial activity. Unfortunately, it is readily extruded, which significantly reduces its efficacy and restricts its potential. Thymol is a monoterpenic phenol that exhibits different biological activities but its major effect is observed only at relatively high concentrations, which raises concern on cytotoxicity. The aim of the study was to potentiate the antibacterial activity of berberine, in a combination treatment with thymol in the opportunistic pathogen Staphylococcus aureus and understand the antibacterial mechanism of the combination treatment. The synergism of berberine and thymol was first established by the checkerboard assay. Then the antibacterial mechanism of the synergistic combination was explored by growth curves, biofilm formation assay, SEM observation, and RNA-Seq based transcriptomic profiling. Checkerboard assay showed that 32 mu g mL(-1) berberine and 64 mu g mL(-1) thymol was a synergistic combination, both concentrations below their cytotoxicity limits for many cells. 32 mu g mL(-1) berberine and 32 mu g mL(-1) thymol was sufficient to inhibit biofilm formation. SEM images confirmed the morphological changes on the structure of combination treated cells. The major finding of the combination treatment from the transcriptomic analysis was the repression in the expression of virulence factors or genes related to virulence factors. Apart from the particular changes related to the cell envelope, the majority of expressional changes seemed to be similar to berberine-treated cells or to be resulting from general stress conditions. The findings of this work showed that when thymol was used in combination with berberine, it enhanced the antibacterial activity of berberine in a synergistic manner. Furthermore, thymol could be considered as an antivirulence agent, disarming S. aureus cells.
  • Publication
    Proteomics Evidence for the Activity of the Putative Antibacterial Plant Alkaloid (-)-Roemerine: Mainstreaming Omics-Guided Drug Discovery
    (MARY ANN LIEBERT, INC, 2015) SARIYAR AKBULUT, BERNA; Gokgoz, Nilay Budeyri; Akbulut, Berna Sariyar
    Discovery of new antibacterials with novel mechanisms is important to counteract the ingenious resistance mechanisms of bacteria. In this connection, omics-guided drug discovery offers a rigorous method in the quest of new antibacterials. (-)-Roemerine is a plant alkaloid that has been reported to possess putative antibacterial activity against Escherichia coli, Bacillus subtilis, and Salmonella typhimurium. The aim of the present study was to characterize the activity of (-)-roemerine in Escherichia coli TB1 using proteomics tools. With (-)-roemerine treatment, we found limited permeability through the outer membrane and repression of transport proteins involved in carbohydrate metabolism, resulting in poor carbon source availability. The shortfall of intracellular carbon sources in turn led to impaired cell growth. The reduction in the abundance of proteins related to translational machinery, amino acid biosynthesis, and metabolism was accompanied by a nutrient-limited state. The latter finding could suggest a metabolic shutdown in E. coli cells. High osmolarity was clearly not one of the reasons of bacterial death by (-)-roemerine. These observations collectively attest to the promise of plant omics and profiling of putative drug candidates using proteomics tools. Omics-guided drug discovery deserves greater attention in mainstream pharmacology so as to better understand the plants' medicinal potentials.
  • Publication
    Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli
    (SPRINGER, 2017) SARIYAR AKBULUT, BERNA; Ayyildiz, Dilara; Arga, Kazim Yalcin; Avci, Fatma Gizem; Altinisik, Fatma Ece; Gurer, Caglayan; Toplan, Gizem Gulsoy; Kazan, Dilek; Wozny, Katharina; Bruegger, Britta; Mertoglu, Bulent; Akbulut, Berna Sariyar
    Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 mu g/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value < 0.05 and fold change > 2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.
  • Publication
    Targeting a hidden site on class A beta-lactamases
    (ELSEVIER SCIENCE INC, 2018) SARIYAR AKBULUT, BERNA; Avci, Fatma Gizem; Altinisik, Fatma Ece; Karacan, Ipek; Karagoz, Duygu Senturk; Ersahin, Serhat; Eren, Ayse; Sayar, Nihat Alpagu; Ulu, Didem Vardar; Ozkirimli, Elif; Akbulut, Berna Sariyar
    Increasing resistance against available orthosteric beta-lactamase inhibitors necessitates the search for novel and powerful inhibitor molecules. In this respect, allosteric inhibitors serve as attractive alternatives. Here, we examine the structural basis of inhibition in a hidden, druggable pocket in TEM-1 betalactamase. Based on crystallographic evidence that 6-cyclohexyl-1-hexyl-beta-D-maltoside (CYMAL-6) binds to this site, first we determined the kinetic mechanism of inhibition by CYMAL-6. Activity measurements with CYMAL-6 showed that it competitively inhibits the wild type enzyme. Interestingly, it exhibits a steep dose -response curve with an IC50 of 100 mu M. The IC50 value changes neither with different enzyme concentration nor with incubation of the enzyme with the inhibitor, showing that inhibition is not aggregation -based. The presence of the same concentrations of CYMAL-6 does not influence the activity of lactate dehydrogenase, further confirming the specificity of CYMAL-6 for TEM-1 beta-lactamase. Then, we identified compounds with high affinity to this allosteric site by virtual screening using Glide and Schrodinger Suite. Virtual screening performed with 500,000 drug like compounds from the ZINC database showed that top scoring compounds interact with the hydrophobic pocket that forms between H10 and Hll helices and with the catalytically important Arg244 residue through pi -cation interactions. Discovery of novel chemical scaffolds that target this allosteric site will pave the way for a new avenue in the design of new antimicrobials. (C) 2018 Elsevier Inc. All rights reserved.
  • Publication
    Assessment of Berberine as a Multi-target Antimicrobial: A Multi-omics Study for Drug Discovery and Repositioning
    (MARY ANN LIEBERT, INC, 2014) SARIYAR AKBULUT, BERNA; Karaosmanoglu, Kubra; Sayar, Nihat Alpagu; Kurnaz, Isil Aksan; Akbulut, Berna Sariyar
    Postgenomics drug development is undergoing major transformation in the age of multi-omics studies and drug repositioning. Rather than applications solely in personalized medicine, omics science thus additionally offers a better understanding of a broader range of drug targets and drug repositioning. Berberine is an isoquinoline alkaloid found in many medicinal plants. We report here a whole genome microarray study in tandem with proteomics techniques for mining the plethora of targets that are putatively involved in the antimicrobial activity of berberine against Escherichia coli. We found DNA replication/repair and transcription to be triggered by berberine, indicating that nucleic acids, in general, are among its targets. Our combined transcriptomics and proteomics multi-omics findings underscore that, in the presence of berberine, cell wall or cell membrane transport and motility-related functions are also specifically regulated. We further report a general decline in metabolism, as seen by repression of genes in carbohydrate and amino acid metabolism, energy production, and conversion. An involvement of multidrug efflux pumps, as well as reduced membrane permeability for developing resistance against berberine in E. coli was noted. Collectively, these findings offer original and significant leads for omics-guided drug discovery and future repositioning approaches in the postgenomics era, using berberine as a multi-omics case study.
  • Publication
    Investigation of the in vivo interaction between beta-lactamase and its inhibitor protein
    (TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, 2015) SARIYAR AKBULUT, BERNA; Budeyri Gokgoz, Nilay; Yalaz, Simay; Avci, Naze Gul; Buldum, Gizem; Ozkirimli Olmez, Elif; Sariyar Akbulut, Berna
    The affinity of beta-lactamase inhibitory protein (BLIP) for TEM-1 beta-lactamase has raised hopes in the challenge of protein-based inhibitor discovery for beta-lactamase-mediated antibiotic resistance. Currently, the effect of the formation of the beta-lactamase:BLIP complex in vivo in beta-lactam resistant bacteria is an open question. The scarcity of information to the extent to which BLIP can impair beta-lactamase activity inside cells has urged us to assess the in vivo efficacy of BLIP as a potent beta-lactamase inhibitor. To this end, beta-lactamase and BLIP were coexpressed in Escherichia coli. Simultaneous expression of beta-lactamase and BLIP and the formation of the TEM-1 beta-lactamase: BLIP complex in the periplasmic space of E. coli were verified by electrophoretic and Western blot techniques. Growth profiles of the cells expressing both beta-lactamase and its protein inhibitor, complemented with beta-lactamase activity measurements, suggested that BLIP synthesis retarded cell growth and reduced beta-lactamase activity. Although co-expression of beta-lactamase and its protein inhibitor did not completely impair cell growth, the specificity of BLIP enabled it to bind beta-lactamase in the bacterial periplasm, regardless of the crowding components.