Person:
ERYILMAZ, OĞUZ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ERYILMAZ

First Name

OĞUZ

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Inline contactless optical measuring of glass fiber properties and retrofitting an adaptive cooling system for glass fiber production
    (2022-10-17) DOĞAN, BARIŞ; ERYILMAZ, OĞUZ; Eberhardt B., Akdere M., Doğan B., Eryılmaz O.
    Various reinforcing materials are used for fiber-reinforced plastics or composites, e.g. glass fibers, carbon fibers or natural fibers. In terms of volume, glass fiber reinforced plastics (GRP) dominate the composites market with a share of approx. 95% of the total market volume [1]. Glass fibers, along with carbon fibers, are thus the most important fibers in the global economic market. In conventional glass fiber production, the individual filaments are cooled as quickly as possible after leaving the bushing to prevent crystallization of the glass and thus achieve high tensile strength. In more modern plants, cooling fins are often used for this purpose. These are brought as close as possible to the heated bushing (approx. 1250 °C) to cool the exiting glass as quickly and efficiently as possible. The flow rate of the coolant is usually only adjusted manually and not actively controlled. As a result, homogeneous cooling over the entire bus ring surface is not possible and the individual filaments exhibit a higher dispersion in their mechanical properties. The aim of the GLASSCOOLER project is to develop a new system component for active cooling of the individual filaments and the necessary measurement and control units. By optically measuring all fibers during solidification and adaptively controlling the cooling, it is possible to reduce the variation in mechanical properties across all filaments and thus achieve higher overall strength. In addition, documentation of fiber properties during the manufacturing process is enabled and quality checks are automated.
  • PublicationOpen Access
    Sustainable fabric printing by using pre-consumed cellulosic textile wastes: The effect of waste particle content
    (2024-04-05) YILDIZ, ZEHRA; KARTAL, İLYAS; KOÇAK, EMİNE DİLARA; ERYILMAZ, OĞUZ; YILDIZ Z., KARTAL İ., KOÇAK E. D., Ozer B., Kus B. N., ERYILMAZ O.
    The textile industry generates significant amounts of waste, including yarn/fiber fluffs, fabric scraps, offcuts, etc. These wastes can be recycled and repurposed for usage in screen printing which is a versatile and cost-effective printing technique by producing high-quality prints. In this study, pre-consumed colored cotton wastes were milled into 30–70 μm particle size by using a miller. Then the colored waste particles were included in a commercial printing paste and applied on cotton fabrics via screen printing. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and energy dispersive spectrometer (EDS) were employed to observe the chemical changes in the printed textile fabrics. The printed fabrics were evaluated through color, wash/rub fastness, tensile strength, surface wettability, tactile, and air permeability properties. The dispersion quality of the waste particles on textile fabrics was observed by using light microscopy and scanning electron microscopy (SEM) images. The overall results demonstrate that a 10% amount of waste fibrous particle inclusion to the printing paste gave optimum results by means of dispersion quality of wastes, air permeability, and handle properties. Above 10% waste amounts, the waste particles cannot be dissipated well on the fabric surface, resulting in agglomerated and non-uniform printed areas. These findings hold substantial potential for promoting sustainable coloring applications by using colored pre-consumed textile wastes within the textile industry while maintaining high-quality fabric products.