Person: EKREN, NAZMİ
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
EKREN
First Name
NAZMİ
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Nanofibrous wound dressing material by electrospinning method(TAYLOR & FRANCIS AS, 2019) İNAN, AHMET TALAT; Yeniay, Eda; Ocal, Leyla; Altun, Esra; Giray, Betul; Oktar, Faik Nuzhet; Inan, Ahmet Talat; Ekren, Nazmi; Kilic, Osman; Gunduz, OguzhanWound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications. [GRAPHICS] .Publication Open Access 3D printed artificial cornea for corneal stromal transplantation(PERGAMON-ELSEVIER SCIENCE LTD, 2020-06) ŞAHİN, ALİ; Ulag, Songul; Ilhan, Elif; Sahin, Ali; Yilmaz, Betul Karademir; Kalaskar, Deepak M.; Ekren, Nazmi; Kilic, Osman; Oktar, Faik Nuzhet; Gunduz, OguzhanThe aim of this study is to understand the optical, biocompatible, and mechanical properties of chitosan (CS) and polyvinyl-alcohol (PVA) based corneal stroma constructs using 3D printing process. Corneal stroma is tested for biocompatibility with human adipose tissue-derived mesenchymal stem cells (hASCs). Physico-chemical and chemical characterization of the construct was performed using scanning electron microscopy (SEM), fourier transforms infrared spectroscopy (FTIR). Optical transmittance was analyzed using UV-Spectrophotometer. Results showed fabricated constructs have required shape and size. SEM images showed construct has thickness of 400 mu m. The FTIR spectra demonstrated the presence of various predicted peaks. The swelling and degradation studies of 13%(wt)PVA and 13%(wt)PVA/(1, 3, 5)%(wt)CS showed to have high swelling ratios of 7 days and degradation times of 30 days, respectively. The light transmittance values of the fabricated cornea constructs decreased with CS addition slightly. Tensile strength values decreased with increasing CS ratio, but we found to support intraocular pressure (IOP) which ranges from 12 to 22 mm-Hg. Preliminary biostability studies showed that composite constructs were compatible with hASCs even after 30 days' of degradation, showing potential for these cells to be differentiated to stroma layer in future. This study has implications for the rapid and custom fabrication of various cornea constructs for clinical applications.