Person:
EKREN, NAZMİ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

EKREN

First Name

NAZMİ

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Effect of yttria-doping on mechanical properties of bovine hydroxyapatite (BHA)
    (SAGE PUBLICATIONS LTD, 2008) OKTAR, FAİK NÜZHET; Gunduz, O.; Daglilar, S.; Salman, S.; Ekren, N.; Agathopoulos, S.; Oktar, F. N.
    Sintered bodies of hydroxyapatite, derived from calcinated bovine bone (BHA) and doped with 0.5 and 1wt% Y2O3, were prepared. Measurements of density, compression strength, and microhardness, along with scanning electron microscopy (SEM) and X-ray diffraction (XRD) were carried out. The experimental results showed that BHA doping with yttria favors formation of glassy phase, which advances sintering and results in a dense and reinforced BHA matrix. The best mechanical properties were achieved after sintering at 1200 degrees C for compressive strength (82 MPa) and 1300 degrees C for microhardness (672 HV). These results are better than pure BHA or composites of hydroxyapatite with Y2O3-stablized zirconia, qualifying yttria (as dopant of BHA) for further in vitro and in vivo experimentation.
  • Publication
    Reinforcing of Biologically Derived Apatite with Commercial Inert Glass
    (SAGE PUBLICATIONS LTD, 2009) OKTAR, FAİK NÜZHET; Gunduz, O.; Ahmad, Z.; Ekren, N.; Agathopoulos, S.; Salman, S.; Oktar, F. N.
    Apatite-based ceramics, derived from fine powder of calcinated bovine-bone (BHA), were successfully reinforced with 5 and 10 wt% commercial inert glass (CIG), which contained biocompatible elements, via sintering at different temperatures between 1000 and 1300 degrees C. The products were subjected to mechanical testing and microstructural and crystallographic analyses. Comparison of the experimental results with those from earlier similar studies shows that CIG is superior for reinforcing of BHA ceramics compared with other bioactive glasses. Provided that the CIG addition does not exceed a certain limit, optimally being approximately 5 wt%, the resultant BHA-CIG materials can exhibit high strength after sintering and remarkable resistance toward over-firing at 1300 degrees C. The influence of the amount of CIG on the developed microstructure and crystalline structure after sintering at different temperatures is discussed.