Person:
EKREN, NAZMİ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

EKREN

First Name

NAZMİ

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Bioinspired scaffold induced regeneration of neural tissue
    (PERGAMON-ELSEVIER SCIENCE LTD, 2019-05) EKREN, NAZMİ; Altun, Esra; Aydogdu, Mehmet O.; Togay, Sine O.; Sengil, Ahmet Z.; Ekren, Nazmi; Haskoylu, Merve E.; Oner, Ebru T.; Altuncu, Nese A.; Ozturk, Gurkan; Crabbe-Mann, Maryam; Ahmed, Jubair; Gunduz, Oguzhan; Edirisinghe, Mohan
    In the last decade, nerve tissue engineering has attracted much attention due to the incapability of self-regeneration. Nerve tissue regeneration is mainly based on scaffold induced nanofibrous structures using both bio and synthetic polymers. The produced nanofibrous scaffolds have to be similar to the natural extracellular matrix and should provide an appropriate environment for cells to attach onto. Nanofibrous scaffolds can support or regenerate cells of tissue. Electrospinning is an ideal method for producing the nanofibrous scaffolds. In this study, Bacterial cellulose (BC)/Poly (epsilon-caprolactone) (PCL) blend nanofibrous scaffolds were successfully prepared by electrospinning for nerve tissue induced repair. The produced nanofibrous scaffolds contain well defined interconnected nanofiber networks with hollow micro/nanobeads. Firstly, in-vitro biocompatibilities of nanofibrous scaffolds were tested with L2929 murine fibroblasts and improved cell adhesion and proliferation was observed with polymer blends compared with PCL only. The primary cell culture was performed with dorsal root ganglia (DRG) cells on nanofibrous samples and the samples were found suitable for enhancing neural growth and neurite outgrowth. Based on these results, the BC/PCL (50:50 wt.%) nanofibrous scaffolds exhibited nerve-like branching and are excellent candidate for potential biomimetic applications in nerve tissue engineering regeneration.
  • Publication
    Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite
    (SPRINGER, 2018) OKTAR, FAİK NÜZHET; Aydogdu, Mehmet Onur; Oprea, Alexandra Elena; Trusca, Roxana; Surdu, Adrian Vasile; Ficai, Anton; Holban, Alina Maria; Iordache, Florin; Paduraru, Andrei Viorel; Filip, Diana Georgiana; Altun, Esra; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    In this study, electrospinning technique has been utilized to prepare composite nanofiber mats of polyurethane (PU)/zirconium dioxide (ZrO2) and PU/zeolite, consisted by antimicrobial properties. Tensile strength measurement test was performed for the mechanical analysis of the nanofibers. Scanning electron microscopy (SEM) were performed for displaying the morphological features of the fiber structure. XRD tests were performed for revealing the chemical structure. Antimicrobial tests were also performed to display antimicrobial effects of the produced materials. In vitro test was also performed to determine cytotoxicity and biocompatibility. The present PU/ZrO2 and PU/zeolite composite nanofibers resulted with improved mechanical properties and good antimicrobial properties against either their pure forms or other studies. Cell proliferation and viability also increased significantly with increase in zeolite and ZrO2 ratio. It is concluded that this composition provides a novel alternative as an antimicrobial material which can be suitable as a wound dressing or a coating material for various healthcare engineering applications.
  • PublicationOpen Access
    Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications
    (BMC, 2017-12) OKTAR, FAİK NÜZHET; Komur, B.; Bayrak, F.; Ekren, N.; Eroglu, M. S.; Oktar, F. N.; Sinirlioglu, Z. A.; Yucel, S.; Guler, O.; Gunduz, O.
    Background: In this study, starch and polycaprolactone (PCL), composite nanofibers were fabricated by co- axial needle electrospinning technique. Processing parameters such as polymer concentration, flow rate and voltage had a marked influence on the composite fiber diameter. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), mechanical and physical properties (such as density, viscosity and electrical conductivity) of the composite fibres were evaluated. Moreover, a cell culture test was performed in order to determine their cytotoxicity for wound dressing application. Results: The effect of starch ratio in the solution on the properties and morphological structure of the fibers produced was presented. With lower starch concentration values, the fibers have greater ultimate tensile strength characteristic (mostly 4 and 5 wt%). According to SEM results, it can be figured out that the nanofibers fabricated have good spinnability and morphology. The mean diameter of the fibers is about 150 nm. According to results of cell culture study, the finding can be determined that the increase of starch in the fiber also increases the cell viability. Conclusions: Composite nanofibers of starch/ PCL have been prepared using a coaxial needle electrospinning technique. PCL was successfully encapsulated within starch. Fiber formation was observed for different ratio of starch. With several test, analysis and measurement performed, some important parameters such as quality and effectuality of each fiber obtained for wound dressing applications were discussed in detail.
  • Publication
    Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications
    (ELSEVIER SCIENCE BV, 2018) OKTAR, FAİK NÜZHET; Aydogdu, Mehmet Onur; Ekren, Nazmi; Suleymanoglu, Mediha; Erdem-Kuruca, Serap; Lin, Chi-Chang; Bulbul, Ertugrul; Erdol, Meltem Nur; Oktar, Faik Nuzhet; Terzi, Umit Kemalettin; Kilic, Osman; Gunduz, Oguzhan
    In this study, one of the most promising methods of tailoring a composite scaffold material in nano sized diameters, electrospinning method were used to produce Polycaprolactone (PCL)/Graphene Oxide (GO)/Iron(II, III) Oxide (Fe3O4) nanocomposite fibers as biocompatible scaffolds for biomedical applications. Products were analyzed by scanning electron microscopy (SEM) for morphological analysis of the electrospun nanocomposites and Fourier Transform Infrared Spectroscopy (FTIR) was used to determine functional groups of the PCL, GO, and Fe3O4 materials in the electrospun nanocomposites. For physical properties, viscosity, density, permittivity, dielectric loss and liquid and solid state alternating current conductivity, measurements were done for each nanocomposite fibers. Effects of concentration percentage of GO on permittivity, dielectric loss and AC conductivity have been analyzed by using measured and calculated data. Trend lines have been drawn for permittivity, dielectric loss and conductivity via concentration percentage of GO. The relation between ac conductivity and frequency have been studied for each concentration percentage of GO and interpretations have been done by using the obtained results.
  • Publication
    Nanofibrous wound dressing material by electrospinning method
    (TAYLOR & FRANCIS AS, 2019) İNAN, AHMET TALAT; Yeniay, Eda; Ocal, Leyla; Altun, Esra; Giray, Betul; Oktar, Faik Nuzhet; Inan, Ahmet Talat; Ekren, Nazmi; Kilic, Osman; Gunduz, Oguzhan
    Wound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications. [GRAPHICS] .