Person: EKİCİ, BÜLENT
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
EKİCİ
First Name
BÜLENT
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Effect of air pressure on nanofiber production in solution blowing method(GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2020-07-21) EKİCİ, BÜLENT; Polat, Yusuf; Yangaz, Murat Umut; Calisir, Mehmet Durmus; Gul, Mehmet Zafer; Demir, Ali; Ekici, Bulent; Kilic, AliIn this study, effect of air pressure on nanofiber diameter and morphology was studied for solution blowing technique. A computational fluid dynamics (CFD) analysis was realized via ANSYS (R) Fluent software, and the results were compared with experimental solutions. The results showed that an increase in air inlet pressure from 100 kPa to 300 kPa has significant effect on nanofiber diameter and morphology. In contrast, as the air inlet pressure increases above 300 kPa to 600 kPa, both nanofiber diameter increases, and the fiber agglomerations are observed due to high turbulence intensity. The droplets were observed at 100 kPa air inlet pressure due to low driving force applied to the polymer solution. The effects of air pressure on nanofiber diameter and morphology have been investigated by using finite volume method, and the results are compared with the experimental results.Publication Metadata only Effect of solution blown nanofibers on Mode-I fracture toughness and dynamic mechanical properties of carbon fiber-reinforced composites(WILEY, 2021) EKİCİ, BÜLENT; Polat, Yusuf; Ekici, Bulent; Kilic, AliIn this study, solution-blown nanofibers were coated on carbon fiber (CF) fabrics to improve Mode-I fracture toughness and dynamic mechanical properties of the composite laminates. Nanofiber coatings of various basis weights were directly spun over CF fabrics, which were then formed into composite laminates via vacuum-assisted resin transfer molding. A double cantilever beam test was conducted to analyze the Mode-I fracture toughness of CF-reinforced epoxy composites. The results showed that solution-blown nanofiber coatings stabilized the crack propagation and increased the delamination strength hence increased the Mode-I fracture toughness by nearly 48% for the addition of 1 g/m(2) nanofibrous web. Dynamic mechanical analysis was performed to investigate the effect of nanofibers on the stiffness of materials and the homogeneity of samples. Storage modulus, loss modulus, and damping factor were calculated, and corresponding Cole-Cole plots were drawn. DMA results showed that the stiffness of the composite sample increased up to 17% even after a minor amount (1 g/m(2)) of nanofiber coating.