Person:
EKİCİ, BÜLENT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

EKİCİ

First Name

BÜLENT

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method
    (ELSEVIER SCI LTD, 2007) EKİCİ, BÜLENT; Kayabasi, Oguz; Ekici, Bulent
    The finite element method, one of the most advanced simulation techniques in solid mechanics, is used for orthopedic biomechanics. It is used as a tool for the design and analysis of total joint replacement and other orthopedic devices. The design of hip joint prostheses is a complex process that requires close co-operation between engineers and surgeons. To design highly durable prostheses one has to take into account the natural processes occurring in the bone. One of the most important factors in the implant design is to reduce stress on the femur and the bone-cement. The purpose of this study is to investigate the behavior of newly designed implants under body weight load during stumbling by parametric modeling. Two different implant materials have been selected to study appropriate material and fatigue life resistant. In the parametric design, the prosthesis functional requirement is that the locking of stem to the femur head using cement should be strong enough to preclude unlocking during the life time of a patient and to prevent sliding of the implant into the bone-cement. In the finite element analysis, physical interactions among joints are simulated by contact algorithms. The femur-bone-cement interface and the bone-cement-implant interface surface to surface contact algorithms of ANSYS were used for implicit static analysis. Three stem-cement interface conditions are considered: completely bonded, debonded with coefficient of friction 0, and debonded with coefficient of friction 0.2. In the analysis, a viscoelastic material model is utilized for bone-cement. Numerical shape optimization is applied to the prosthesis. The results of finite element simulations are compared with Charnley's implant results and appropriate material for the implant is proposed. The best stem shapes fulfilling the desired functional requirements are chosen for the design. These findings can form a base for further research such as the optimum design of bone-implant hip prosthesis. (C) 2006 Published by Elsevier Ltd.
  • Publication
    Effect of fiber set-up and density on mechanical behavior of robotic 3D-printed composites
    (2022-03-01) EKİCİ, BÜLENT; Ipekci A., EKİCİ B.
    The further development of composite manufacturing methods is characterized by the progress of their mechanical properties which are widely used in many applications as automotive, aerospace, and marine industries. The automated composite production techniques are as follows: automatic tape layering, automatic fiber placement, and filament winding methods used in many industries. Photopolymerized composites and their additive manufacturing methods are promising with new advances in technology. This method for printing continuous fiber-reinforced plastic composite parts by a six-axis industrial robotic arm is based on fused deposition modeling technology. The objective of this work is to obtain a better understanding of the mechanical properties of robotic three-dimensional printed photopolymer resin continuous fiberglass-reinforced composites (CFGRCs) as a function of different printing speeds (10, 20 and 30mm/s), fiber densities (45, 55 and 65%), and fiber orientations (0, 0/90 and +/- 45 degrees). This work infers that mechanical properties are significantly affected by the fiber density and fiber orientation of CFGRC. With this method, approximately 300MPa tensile strength can be obtained and structurally preferred instead of ferrous materials in many areas.