Person:
GÜLHAN, REZZAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÜLHAN

First Name

REZZAN

Name

Search Results

Now showing 1 - 10 of 26
  • Publication
    The relationship between age-related development of spike-and-wave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2008) ONAT, FİLİZ; Carcak, Nihan; Aker, Rezzan Guelhan; Oezdemir, Osman; Demiralp, Tamer; Onat, Filiz Yilmaz
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are resistant to amygdaloid kindling. Since in GAERS the characteristics of spike-and-wave discharges (SWDs) change with age, we have studied the relation between SWD maturation and the development of kindling resistance. Non-epileptic Wistar rats and GAERS were stimulated in basolateral amygdala with 400 mu A at 20 min intervals until they reached stage 5 seizures or for a maximum of 36 stimulations. All of the Wistar rats, the postnatal (PN) day 20 GAERS and the (kindling-prone) subgroups of GAERS at PN30 and PN60 reached stage 5 seizures; at PN20, PN30 and PN60 kindling rates were significantly slower in GAERS compared to Wistar rats. At PN30 and PN60, 41% and 69% of GAERS, respectively, showed no stage 3, 4 or 5 seizures after 36 stimulations (kindling-resistant subgroups). The SWD maturation involves changes in spectral patterns and correlate with age-related increases in kindling resistance in GAERS. (C) 2008 Elsevier Inc. All rights reserved.
  • Publication
    Plasma lamotrigine levels of patients with polymorphic UGT1A4 enzymes
    (2010-06-27) GÜLÇEBİ İDRİZ OĞLU, MEDİNE; GÖREN, MEHMET ZAFER; GÜLHAN, REZZAN; ONAT, FİLİZ; GÜLÇEBİ İDRİZ OĞLU M., ÖZKAYNAKÇI A., GÖREN M. Z. , ÖZKARA Ç., GÜLHAN R., ONAT F.
  • Publication
    The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy
    (ELSEVIER, 2011) ONAT, FİLİZ; Gulcebi, Medine Idrizoglu; Ozkaynakci, Aydan; Goren, Mehmet Zafer; Aker, Rezzan Gulhan; Ozkara, Cigdem; Onat, Filiz Yilmaz
    Lamotrigine (LTG) which has a widespread use in epilepsy treatment as an antiepileptic agent is metabolized by UDP-glucuronosyl transferase (UGT) enzymes. In this study, single nucleotide polymorphisms, P24T and L48V, of the UGT1A4 enzyme have been investigated in a Turkish population of patients with epilepsy (n=131) by comparing serum levels of LTG of wild type and polymorphic subjects. High performance liquid chromatography (HPLC) was used to measure serum concentrations of LTG. The P24T and L48V polymorphisms of the UGT1A4 enzyme were analyzed with a matrix assisted laser desorption-time of flight (MALDI-TOF) mass spectrometry method. The frequencies of the heterozygous alleles for L48V or P24T polymorphisms were 22.4% and 3.8%, respectively. L48V polymorphism was found to decrease the serum concentration of LTG in patients on monotherapy or polytherapy. The LTG levels of non smoking monotherapy patients were 52% lower for the L48V polymorphism than for wild type alleles. Also the LTG levels were significantly lower for non smoking or smoking polymorphic alleles than for normal. The high frequency of the L48V polymorphism detected in the Turkish population indicates that LTG dose adjustments in patients with the UGT1A4 L48V polymorphic enzyme should be taken into account. (c) 2011 Elsevier B.V. All rights reserved.
  • Publication
    Cardiovascular regulation through hypothalamic GABA(A) receptors in a genetic absence epilepsy model in rat
    (BLACKWELL PUBLISHING INC, 2002) ONAT, FİLİZ; Aker, RG; Onat, FY
    Purpose: gamma-Aminobutyric acid (GABA) plays a vital role in both central cardiovascular homeostasis and pathogenesis of epilepsy. Epilepsy affects autonomic nervous system functions. In this study, we aimed to clarify the role of GABA(A) receptors in hypothalamic cardiovascular regulation in a genetically determined animal model of absence epilepsy. Methods: Nonepileptic Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) were instrumented with a guide cannula for drug injection and extradural electrodes for EEG recording. After a recovery period, iliac arterial catheters were inserted for direct measurement of mean arterial pressure and heart rate. Bicuculline, a GABA(A)-receptor antagonist, was injected into the dorsomedial (DMH) or posterior (PH) hypothalamic nuclei of nonepileptic control rats or GAERS. Blood pressure, heart rate, and EEG recordings were performed in conscious unrestrained animals. Results: Bicuculline injections into the hypothalamus produced increases in blood pressure and heart rate of both control rats and GAERS. The DMH group of GAERS showed a twofold increase in the blood pressure and the heart rate compared with those of control rats. Pressor responses to bicuculline, when microinjected into the PH, were similar in the nonepileptic animals and GAERS. Conversely, the amplitude of tachycardic responses to the administration of bicuculline into the PH was significantly higher in GAERS compared with those of control rats. Conclusions: The bicuculline-induced increases in blood pressure and heart rate were more prominent when given in the DMH of GAERS. These results indicate an increased GABA(A) receptor-mediated cardiovascular response through the DMH in conscious rats with absence epilepsy.
  • Publication
    Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat
    (WILEY, 2001) ONAT, FİLİZ; Cavdar, S; San, T; Aker, R; Sehirli, U; Onat, F
    The stimulation or ablation of cerebellar structures has produced a variety of visceral responses, indicating a cerebellar role in visceral functions. Studies using anterograde and retrograde tracing methods have revealed connections between the hypothalamus and cerebellar structures. The aim of this study is to investigate the cerebellar connections of the dorsomedial (DMH) and posterior hypothalamic nuclei using retrograde axonal transport of horseradish peroxidase (HRP). In the present study, micro-injection of HRP restricted within the borders of the DMH showed that the projections of this nucleus are not uniform throughout its extent. The posterior DMH receives projections from the cerebellum whereas the anterior DMH does not. These projections were from the (greatest to least concentration) lateral (dentate), anterior interposed (emboliform), and medial (fastigial) cerebellar nuclei. In addition, both the anterior and posterior DMH receive projections from various areas of the brainstem which confirms earlier studies and provides detailed descriptions. This study also demonstrates the distribution of labelled neurons to cerebellar and brainstem nuclei following HRP injection into the posterior hypothalamic nucleus. It provides clear evidence for a direct cerebellar nuclei-posterior DMH and cerebellar nuclei-posterior hypothalamic nucleus connections. We suggest that the brainstem reticular nuclei and other connections, such as the solitary, trigeminal and vestibular nuclei, of both DMH and posterior hypothalamus may contribute to the indirect cerebellohypothalamic connections. These observations offer a new perspective on the question of how the cerebellum may influence autonomic activity.
  • Publication
    Extracellular concentrations of catecholamines and amino acids in the dorsomedial hypothalamus of kindled rats - A Microdialysis Study
    (KARGER, 2003) ONAT, FİLİZ; Goren, MZ; Aker, R; Yananli, HR; Onat, FY
    Epilepsy affects homeostasis and autonomic nervous system functions. It has been thought that the dysfunction in the autonomic neural mechanisms could be a cause of sudden unexpected death in patients with epilepsy. The kindling model of epilepsy is considered to be an animal model for complex partial seizures with secondary generalization. The objectives of this study were to investigate the extracellular gamma-aminobutyric acid (GABA), glutamate, noradrenaline and dopamine levels in the dorsomedial nucleus of the hypothalamus in nonepileptic and kindled epileptic rats and to explain some of the cardiovascular changes in the kindling model of epilepsy. Stimulation electrodes were stereotaxically implanted into the basolateral amygdala and electrical stimulation was applied 3 times a day at a constant current. The rats were then kindled to full stage 5 seizures. Microdialysis experiments were performed to demonstrate the neurotransmitter levels in the dorsomedial nucleus of the hypothalamus 3-5 days after being kindled. Decreases in noradrenaline and dopamine levels in the dorsomedial nucleus were detected in the conscious kindled animals. This finding is in agreement with prior findings that the noradrenergic system has a negative role in the process of kindling. The basal level of glutamic acid and GABA remained unchanged in the kindled group when compared to non-epileptic animals, and similarly, neither blood pressure nor heart rate responses to bicuculline or N-methyl-D-aspartate were affected by the acute kindled state. These findings suggest that the autonomic changes in kindling require further studies. Copyright (C) 2003 S. Karger AG, Basel.
  • Publication
    p353 Evalution of antiepileptic drug use in the pregnant patients with epilepsy in a university hospital in Istanbul
    (2014-07-03) GÜLÇEBİ İDRİZ OĞLU, MEDİNE; GÜLHAN, REZZAN; KARAALP, ATİLA; GÖREN, MEHMET ZAFER; ONAT, FİLİZ; GÜLÇEBİ İDRİZ OĞLU M., Küçükibrahimoğlu E., JAFAROVA DEMİRKAPU M., GÜLHAN R., KARAALP A., GÖREN M. Z., ONAT F.
  • Publication
    GABA(A) receptor mediated transmission in the thalamic reticular nucleus of rats with genetic absence epilepsy shows regional differences: Functional implications
    (ELSEVIER SCIENCE BV, 2006) ONAT, FİLİZ; Aker, Rezzan Gulhan; Ozyurt, Hazan B.; Yananli, Hasan R.; Cakmak, Yusuf Ozgur; Ozkaynakci, Aydan E.; Sehirli, Umit; Saka, Erdinc; Cavdar, Safiye; Onat, Filiz Yimaz
    The aim of the present study was to investigate the effect of local injections of the GABA(A) receptor antagonist, bicuculline, into the rostral and caudal parts of the thalamic reticular nucleus (TRN), on the generation of spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Spike-and-wave discharges are important in the pathophysiology of absence epilepsy and generated by the cortico-thalamo-cortical pathway, where GABA has a significant role, particularly in the TRN. Artificial cerebrospinal fluid or bicuculline was administered to rostral or caudal parts of TRN of GAERS through a stereotaxically placed guide cannula. Administration of bicuculline produced opposite effects according to the injection site. Administration into the caudal TRN produced statistically significant increases in the duration of spike-and-wave discharges, whereas injections into the rostral TRN produced significant decreases. Correspondingly, distinct patterns of afferent connections have been demonstrated with the wheat-germ-agglutinin horseradish peroxidase (WGA-HRP) retrograde tracing method in control non-epileptic rats and GAERS for the rostral and caudal parts of the TRN. Injection of WGA-HRP tracer showed no detectable difference regarding the rostral and caudal connections between GAERS and Wistar animals. Rostral parts of TRN have thalamic and cortical connections that are primarily motor and limbic whereas for the caudal parts these connections are primarily sensory. Further, the rostral parts receive inputs from the substantia nigra pars reticularis and the ventral pallidum that the caudal part lacks. The extent to which these connectional differences may be responsible for the functional differences demonstrated by the bicucculine injections remains to be explored. (c) 2006 Elsevier B.V. All rights reserved.
  • Publication
    Genetik absans epilepsili sıçanlarda hipokampal inhibitör aktivite artışı Kindling’xxe direnç oluşmasına katkıda bulunabilir
    (2008-06-04) GÜLHAN, REZZAN; ONAT, FİLİZ; SARA M. Y., ONUR E. R., ÇARÇAK YILMAZ N., GÜLHAN R., ONAT F.
  • Publication
    Changes in intracellular protein expression in cortex., thalamus and hippocampus in a genetic rat model of absence epilepsy
    (PERGAMON-ELSEVIER SCIENCE LTD, 2011) OGAN, AYŞE; Danis, Ozkan; Demir, Serap; Gunel, Aslihan; Aker, Rezzan Gulhan; Gulcebi, Medine; Onat, Filiz; Ogan, Ayse
    Epilepsy is a chronic disorder characterized by repeated seizures resulting from abnormal activation of neurons in the brain. Although mutations in genes related to Na+, K+, Ca2+ channels have been defined, few studies show intracellular protein changes. We have used proteomics to investigate the expression of soluble proteins in a genetic rat model of absence epilepsy Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The advantage of this technique is its high throughput quantitative and qualitative detection of all proteins with their post-translational modifications at a given time. The parietal cortex and thalamus, which are the regions responsible for the generation of absence seizures, and the hippocampus, which is not involved in this activity, were dissected from GAERS and from non-epileptic control rat brains. Proteins from each tissue sample were isolated and separated by two-dimensional gel electrophoresis. Spots that showed significantly different levels of expression between controls and GAERS were identified by nano LC-ESI-MS/MS. Identified proteins were: ATP synthase subunit delta and the 14-3-3 zeta isoform in parietal cortex; myelin basic protein and macrophage migration inhibitory factor in thalamus; and macrophage migration inhibitory factor and 0-beta 2 globulin in hippocampus. All protein expressions were up-regulated in GAERS except 0-beta globulin. These soluble proteins are related to energy generation, signal transduction, inflammatory processes and membrane conductance. These results indicate that not only membrane proteins but also cytoplasmic proteins may take place in the pathophysiology and can be therapeutic targets in absence epilepsy. (C) 2011 Elsevier Inc. All rights reserved.