Person:
GÜLHAN, REZZAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÜLHAN

First Name

REZZAN

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase
    (WILEY, 2001-04) ONAT, FİLİZ; Cavdar, S; Onat, F; Aker, R; Sehirli, U; San, T; Yananli, HR
    The posterior hypothalamic nucleus has been implicated as an area controlling autonomic activity. The afferent input to the nucleus will provide evidence as to its role in autonomic function. in the present study, we aimed to identify the detailed anatomical projections to the posterior hypothalamic nucleus from cortical, subcortical and brainstem structures, using the horseradish peroxidase (HRP) retrograde axonal transport technique in the rat, Subsequent to the injection of HRP into the posterior hypothalamic nucleus, extensive cell labelling was observed bilaterally in various areas of the cerebral cortex including the cingulate, frontal, parietal and insular cortices. At subcortical levels: labelled cells were observed in the medial and lateral septal nuclei, the bed nucleus of stria terminalis, and various thalamic and amygdaloid nuclei. Also axons of the vertical and horizontal limbs of the diagonal band were labelled and labelled cells were localised at the CA1 and CA3 fields of the hippocampus and the dentate gyrus. The brainstem projections were from the medial, lateral and parasolitary nuclei, the intercalated nucleus of the medulla, the sensory nuclei of the trigeminal nerve, and various reticular, vestibular, raphe and central rey nuclei. The posterior hypothalamic nucleus also received projections from the lateral and medial cerebellar nuclei and from upper cervical spinal levels. The results are discussed in relation to the involvement of the posterior hypothalamic nucleus in autonomic function and allows a better understanding of how the brain controls visceral function.
  • Publication
    The effect of telmisartan, an angiotensin receptor blocker, on alcohol consumption and alcohol-induced dopamine release in the nucleus accumbens
    (ELSEVIER SCIENCE INC, 2020) YANANLI, HASAN RACİ; Tezcan, Kutluhan; Yananli, Hasan Raci; Demirkapu, Mahluga Jafarova; Goren, M. Zafer; Sakalli, H. Eren; Colombo, Giancarlo; Gulhan, Rezzan
    Alcohol use disorder remains a major health problem. The mesocorticolimbic dopaminergic system, including the nucleus accumbens region and multiple neural circuits, is involved in its complex underlying mechanism. For instance, alcohol intake stimulates the central and peripheral renin-angiotensin system and increases angiotensin II levels, which predominantly affect angiotensin 1 receptors both in the periphery and in the brain. In this study, we aimed to investigate the effects of the intracerebroventricularly-administered angiotensin 1 receptor blocker telmisartan on the alcohol consumption of male Sardinian alcohol-preferring (sP) rats and on the alcohol-induced dopamine levels in the nucleus accumbens region in Wistar rats. Acute intracerebroventricular administration of telmisartan (100 nM) reduced the alcohol intake for 24 hours without affecting food and water consumption in sP rats. Acute intracerebroventricular injection of the opioid receptor antagonist naloxone (75 nM), tested as a reference compound, also reduced the alcohol consumption in sP rats; however, naloxone's effect lasted only for 30 minutes. In microdialysis experiments, telmisartan administered intracerebroventricularly did not change dopamine levels in the nucleus accumbens that had been induced by acute intraperitoneal alcohol administration in Wistar rats. According to these results, further studies are needed to elucidate the role of the renin-angiotensin system on alcohol use disorder pathophysiology. (c) 2021 Elsevier Inc. All rights reserved.