Person:
GÜLHAN, REZZAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÜLHAN

First Name

REZZAN

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    The relationship between age-related development of spike-and-wave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2008) ONAT, FİLİZ; Carcak, Nihan; Aker, Rezzan Guelhan; Oezdemir, Osman; Demiralp, Tamer; Onat, Filiz Yilmaz
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are resistant to amygdaloid kindling. Since in GAERS the characteristics of spike-and-wave discharges (SWDs) change with age, we have studied the relation between SWD maturation and the development of kindling resistance. Non-epileptic Wistar rats and GAERS were stimulated in basolateral amygdala with 400 mu A at 20 min intervals until they reached stage 5 seizures or for a maximum of 36 stimulations. All of the Wistar rats, the postnatal (PN) day 20 GAERS and the (kindling-prone) subgroups of GAERS at PN30 and PN60 reached stage 5 seizures; at PN20, PN30 and PN60 kindling rates were significantly slower in GAERS compared to Wistar rats. At PN30 and PN60, 41% and 69% of GAERS, respectively, showed no stage 3, 4 or 5 seizures after 36 stimulations (kindling-resistant subgroups). The SWD maturation involves changes in spectral patterns and correlate with age-related increases in kindling resistance in GAERS. (C) 2008 Elsevier Inc. All rights reserved.
  • PublicationOpen Access
    Effect of stage 2 kindling on local cerebral blood flow rates in rats with genetic absence epilepsy
    (WILEY, 2009-01) ONAT, FİLİZ; Carcak, Nihan; Ferrandon, Arielle; Koning, Estelle; Aker, Rezzan Guelhan; Oezdemir, Osman; Onat, Filiz Yilmaz; Nehlig, Astrid
    Genetic absence epilepsy rats from Strasbourg (GAERS) are resistant to the progression of kindling seizures. We studied local cerebral blood flow (LCBF) changes in brain regions involved in seizures in both GAERS and nonepileptic rats (NEC) to map the differences that may be related to the resistance to kindling. Electrodes were implanted in the amygdala of adult NEC and GAERS male rats, which were stimulated to reach stage 2. Quantitative autoradiographic measurements of LCBF were performed by the [C-14]-iodoantipyrine ([C-14]IAP) autoradiographic technique allowing the precise mapping of regional perfusion changes. LCBF rates were measured bilaterally in 43 brain regions. The tracer infusion lasted for 60 s and started at 15 s before seizure induction. Rates of LCBF increased in stimulated GAERS and NEC groups compared to nonstimulated controls. The LCBF increase in stimulated GAERS was larger and more widespread than that observed in stimulated NEC. The LCBF increase in the somatosensory cortex, ventrobasal and anterior thalamic nuclei, hypothalamus, subthalamic nucleus, piriform, entorhinal and perirhinal cortex, amygdala, CA2 region of hippocampus, and substantia nigra was statistically significantly larger in stimulated GAERS compared to stimulated NEC rats. The results show that more brain regions are activated by kindling stimulation in GAERS. This widespread activation in GAERS involves the somatosensory cortex and thalamus, which are both known to be involved in the expression of absence seizures as well as numerous limbic regions thought not to play a role in the expression of absence seizures, suggesting an interaction between corticothalamocortical and limbic circuitries.
  • Publication
    Hippocampal kindling in rats with absence epilepsy resembles amygdaloid kindling
    (ELSEVIER, 2008) ONAT, FİLİZ; Akman, Ozlem; Karson, Ayse; Aker, Rezzan Gulhan; Ates, Nurbay; Onat, Filiz Yilmaz
    Purpose: WAG/Rij and GAERS rats show delays or resistance to secondary generalization of limbic seizures during amygdaloid kindling. In this study, we aimed to evaluate the kindling from a different limbic site, hippocampus, and to compare its effects on spike-and-wave discharges (SWDs) with that of amygdaloid kindling. Methods: Recording electrodes were implanted epidurally and a stimulation/recording electrode was implanted into the ventral hippocampus in the WAG/Rij, GAERS and Wistar rats. Animals received kindling stimulation twice daily at their afterdischarge thresholds until they reached stage 5 seizures, or the maximum number of stimulations (50) had been delivered. The EEG was recorded to analyze SWDs and afterdischarge durations. Results: All Wistar rats reached stage 5 by the 34th stimulation. 4 of 8 WAG/Rij rats and 3 of 6 GAERS rats displayed stage 4/5 seizures (kindling-prone rats); the rest stayed at stage 2 seizures (kindling-resistant rats) even after 50th stimulations. The cumulative duration and number of SWDs decreased in the post-stimulation period after the first stage 2 seizures, whereas these parameters increased after the first stage 3 seizures in the kindling-prone WAG/Rij and GAERS. The peak frequency of SWDs and its harmonics decreased significantly only in the GAERS group after stage 4 seizures. Conclusion: Hippocampal kindling resembles amygdaloid kindling in showing a delay of or resistance to secondary seizure generalization, which supported the interaction of thalamo-cortical and limbic circuitry in GAERS and WAG/Rij. (C) 2008 Elsevier B.V. All rights reserved.
  • Publication
    Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy
    (BLACKWELL PUBLISHING INC, 2002) ONAT, FİLİZ; Eskazan, E; Onat, FY; Aker, R; Oner, G
    Purpose: The existence of absence epilepsy and temporal partial seizure pattern in the same patient is an uncommon state. In the present study, we aimed to evaluate whether the process of kindling as a model of complex partial seizures with secondary generalization is altered in rats with genetic absence epilepsy. Methods: Six- to 12-month-old nonepileptic control Wistar rats and genetic absence epileptic rats from Strasbourg (GAERS) were used in the experiments. One week before the experiments, bilateral stimulation and recording electrodes were implanted stereotaxically into the basolateral amygdala and cortex, respectively. Animals were stimulated at their afterdischarge threshold current twice daily for the process of kindling and accepted as fully kindled after the occurrence of five grade 5 seizures. Bilateral EEGs from amygdala and cortex were recorded continuously during 20 min before and 40 min after each stimulus. Results: All control Wistar rats were fully kindled after stimulus 12 to 15. Although the maximal number of stimulations had been applied, GAERS remained at stage 2, and no motor seizures were observed. The afterdischarge duration in bilateral amygdala and the cortex after the kindling stimulus was shorter in GAERS when compared with control rats. Conclusions: Occurrence of only grade 2 seizures and no observation of grade 3-5 seizures in GAERS with the maximal number of stimulations would suggest that the generalized absence seizures may be the reason of the resistance in the secondary generalization of limbic seizures during amygdala kindling.
  • PublicationOpen Access
    The effect of generalized absence seizures on the progression of kindling in the rat
    (BLACKWELL PUBLISHING, 2007-09) ONAT, FİLİZ; Onat, Filiz Yilmaz; Aker, Rezzan Guelhan; Gurbanova, Ayten Azizova; Ates, Nurbay; van Luijtelaar, Gilles
    The involvement of the thalamus in limbic epileptogenesis has recently drawn attention to the connectivity between the nuclei of the thalamus and limbic structures. Thalamo-limbic circuits are thought to regulate limbic seizure activity whereas thalamocortical circuits are involved in the expression and generation of spike-and-wave discharges (SWDs) in the absence epilepsy models. Genetic Absence Epilepsy Rats From Strasbourg (GAERS) and WAG/Rij (Wistar Albino Glaxo from Rijswijk) are well-defined genetic animal models of absence epilepsy. We aimed to examine the duration of behavioral changes in the kindling process and the relation of SWD activity to the kindling progress in the GAERS and WAG/Rij animals. Electrodes were stereotaxically implanted into the basolateral amygdala and the cortex of rats for stimulation and recording. The animals were stimulated at the threshold for producing afterdischarges. EEG was recorded to analyze SWDs and afterdischarge durations. The seizure severity was evaluated using Racine's 5-stage scale. None of the GAERS animals reached stage 3, 4, or 5 after application of 30 stimulations. The WAG/Rij animals showed different rate of kindling, therefore they were further categorized into the kindling-resistant, slow-kindled, and rapid-kindled groups. The kindling-resistant animals demonstrated a significantly longer duration of SWDs on the first day of the experiment before kindling stimulation and shorter duration of afterdischarge than did the kindled WAG/Rij animals. Behavioral durations at stage 2 were longer in kindled Wistar and WAG/Rij animals compared to kindling-resistant WAG/Rij and GAERS. These results suggest that mechanisms involved in the generation of SWDs act as a counterbalance to the excitability induced by kindling.