Person:
GÜLHAN, REZZAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÜLHAN

First Name

REZZAN

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    The relationship between age-related development of spike-and-wave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2008) ONAT, FİLİZ; Carcak, Nihan; Aker, Rezzan Guelhan; Oezdemir, Osman; Demiralp, Tamer; Onat, Filiz Yilmaz
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are resistant to amygdaloid kindling. Since in GAERS the characteristics of spike-and-wave discharges (SWDs) change with age, we have studied the relation between SWD maturation and the development of kindling resistance. Non-epileptic Wistar rats and GAERS were stimulated in basolateral amygdala with 400 mu A at 20 min intervals until they reached stage 5 seizures or for a maximum of 36 stimulations. All of the Wistar rats, the postnatal (PN) day 20 GAERS and the (kindling-prone) subgroups of GAERS at PN30 and PN60 reached stage 5 seizures; at PN20, PN30 and PN60 kindling rates were significantly slower in GAERS compared to Wistar rats. At PN30 and PN60, 41% and 69% of GAERS, respectively, showed no stage 3, 4 or 5 seizures after 36 stimulations (kindling-resistant subgroups). The SWD maturation involves changes in spectral patterns and correlate with age-related increases in kindling resistance in GAERS. (C) 2008 Elsevier Inc. All rights reserved.
  • PublicationOpen Access
    Effect of stage 2 kindling on local cerebral blood flow rates in rats with genetic absence epilepsy
    (WILEY, 2009-01) ONAT, FİLİZ; Carcak, Nihan; Ferrandon, Arielle; Koning, Estelle; Aker, Rezzan Guelhan; Oezdemir, Osman; Onat, Filiz Yilmaz; Nehlig, Astrid
    Genetic absence epilepsy rats from Strasbourg (GAERS) are resistant to the progression of kindling seizures. We studied local cerebral blood flow (LCBF) changes in brain regions involved in seizures in both GAERS and nonepileptic rats (NEC) to map the differences that may be related to the resistance to kindling. Electrodes were implanted in the amygdala of adult NEC and GAERS male rats, which were stimulated to reach stage 2. Quantitative autoradiographic measurements of LCBF were performed by the [C-14]-iodoantipyrine ([C-14]IAP) autoradiographic technique allowing the precise mapping of regional perfusion changes. LCBF rates were measured bilaterally in 43 brain regions. The tracer infusion lasted for 60 s and started at 15 s before seizure induction. Rates of LCBF increased in stimulated GAERS and NEC groups compared to nonstimulated controls. The LCBF increase in stimulated GAERS was larger and more widespread than that observed in stimulated NEC. The LCBF increase in the somatosensory cortex, ventrobasal and anterior thalamic nuclei, hypothalamus, subthalamic nucleus, piriform, entorhinal and perirhinal cortex, amygdala, CA2 region of hippocampus, and substantia nigra was statistically significantly larger in stimulated GAERS compared to stimulated NEC rats. The results show that more brain regions are activated by kindling stimulation in GAERS. This widespread activation in GAERS involves the somatosensory cortex and thalamus, which are both known to be involved in the expression of absence seizures as well as numerous limbic regions thought not to play a role in the expression of absence seizures, suggesting an interaction between corticothalamocortical and limbic circuitries.
  • Publication
    GABA(A) receptor mediated transmission in the thalamic reticular nucleus of rats with genetic absence epilepsy shows regional differences: Functional implications
    (ELSEVIER SCIENCE BV, 2006) ONAT, FİLİZ; Aker, Rezzan Gulhan; Ozyurt, Hazan B.; Yananli, Hasan R.; Cakmak, Yusuf Ozgur; Ozkaynakci, Aydan E.; Sehirli, Umit; Saka, Erdinc; Cavdar, Safiye; Onat, Filiz Yimaz
    The aim of the present study was to investigate the effect of local injections of the GABA(A) receptor antagonist, bicuculline, into the rostral and caudal parts of the thalamic reticular nucleus (TRN), on the generation of spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Spike-and-wave discharges are important in the pathophysiology of absence epilepsy and generated by the cortico-thalamo-cortical pathway, where GABA has a significant role, particularly in the TRN. Artificial cerebrospinal fluid or bicuculline was administered to rostral or caudal parts of TRN of GAERS through a stereotaxically placed guide cannula. Administration of bicuculline produced opposite effects according to the injection site. Administration into the caudal TRN produced statistically significant increases in the duration of spike-and-wave discharges, whereas injections into the rostral TRN produced significant decreases. Correspondingly, distinct patterns of afferent connections have been demonstrated with the wheat-germ-agglutinin horseradish peroxidase (WGA-HRP) retrograde tracing method in control non-epileptic rats and GAERS for the rostral and caudal parts of the TRN. Injection of WGA-HRP tracer showed no detectable difference regarding the rostral and caudal connections between GAERS and Wistar animals. Rostral parts of TRN have thalamic and cortical connections that are primarily motor and limbic whereas for the caudal parts these connections are primarily sensory. Further, the rostral parts receive inputs from the substantia nigra pars reticularis and the ventral pallidum that the caudal part lacks. The extent to which these connectional differences may be responsible for the functional differences demonstrated by the bicucculine injections remains to be explored. (c) 2006 Elsevier B.V. All rights reserved.
  • Publication
    Hippocampal kindling in rats with absence epilepsy resembles amygdaloid kindling
    (ELSEVIER, 2008) ONAT, FİLİZ; Akman, Ozlem; Karson, Ayse; Aker, Rezzan Gulhan; Ates, Nurbay; Onat, Filiz Yilmaz
    Purpose: WAG/Rij and GAERS rats show delays or resistance to secondary generalization of limbic seizures during amygdaloid kindling. In this study, we aimed to evaluate the kindling from a different limbic site, hippocampus, and to compare its effects on spike-and-wave discharges (SWDs) with that of amygdaloid kindling. Methods: Recording electrodes were implanted epidurally and a stimulation/recording electrode was implanted into the ventral hippocampus in the WAG/Rij, GAERS and Wistar rats. Animals received kindling stimulation twice daily at their afterdischarge thresholds until they reached stage 5 seizures, or the maximum number of stimulations (50) had been delivered. The EEG was recorded to analyze SWDs and afterdischarge durations. Results: All Wistar rats reached stage 5 by the 34th stimulation. 4 of 8 WAG/Rij rats and 3 of 6 GAERS rats displayed stage 4/5 seizures (kindling-prone rats); the rest stayed at stage 2 seizures (kindling-resistant rats) even after 50th stimulations. The cumulative duration and number of SWDs decreased in the post-stimulation period after the first stage 2 seizures, whereas these parameters increased after the first stage 3 seizures in the kindling-prone WAG/Rij and GAERS. The peak frequency of SWDs and its harmonics decreased significantly only in the GAERS group after stage 4 seizures. Conclusion: Hippocampal kindling resembles amygdaloid kindling in showing a delay of or resistance to secondary seizure generalization, which supported the interaction of thalamo-cortical and limbic circuitry in GAERS and WAG/Rij. (C) 2008 Elsevier B.V. All rights reserved.
  • Publication
    GABA and L-glutamic acid release in en bloc resection slices of human hippocampus: an in vitro microdialysis study
    (SPRINGER-VERLAG ITALIA SRL, 2001) ONAT, FİLİZ; Goren, MZ; Onat, F; Ozkara, C; Ozyurt, E; Eskazan, E; Aker, R
    The interaction of neurotransmitters has been a major interest in pathophysiological conditions like epilepsy. In vivo microdialysis has recently gained much validity in measuring neurotransmitter release in experimental animals. However, there is a paucity of data concerning its use in humans on the grounds of safety considerations. Microdialysis experiments were performed using die hippocampal head region removed from patients with medically intractable seizures, who underwent surgery for mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Following en bloc resection, the tissues were immediately transferred to the essential in vitro milieu. Slices were incubated in lactated Ringer's solution and microdialysis probes inserted into the slices were perfused with artificial cerebrospinal fluid (aCSF). When the K+ concentration of aCSF was elevated to 100 mM, GABA and L-glutamic acid levels increased by 293% and 177%, respectively. This method may serve as an experimental model for human brain, to throw more light on the interactions between GABA and L-glutamic acid in hippocampal tissues obtained from patients with MTLE-HS.