Person:
SANCAK, ERHAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SANCAK

First Name

ERHAN

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    Investigation of electromagnetic shielding properties of needle-punched nonwoven fabrics with stainless steel and polyester fiber
    (SAGE PUBLICATIONS LTD, 2013) BEYİT, ALİ; Ozen, Mustafa Sabri; Sancak, Erhan; Beyit, Ali; Usta, Ismail; Akalin, Mehmet
    In this study, electromagnetic shielding properties of needle-punched nonwoven fabrics were investigated. The paper evaluates and compares the electromagnetic shielding of needle-punched nonwoven fabrics produced from stainless steel/polyester and normal polyester fibers. Stainless steel/polyester fiber and normal polyester fiber were blended at specified ratios in the experimental study. Webs were produced from the fibers with the carding machine and then bonded with the needle-punching machines. The thickness and electromagnetic shielding properties of the needle-punched fabrics were tested. An electromagnetic shielding effectiveness (EMSE) device was used for measuring the electromagnetic shielding. The experimental study indicated that as the conductive stainless steel fiber ratio in nonwoven fabrics increases, the EMSE also increases at low, medium and high frequencies. Satisfactory electromagnetic shielding values were obtained at wide bandwidth, i.e. 1200-3000 MHz. The highest EMSE values of the needle-punched nonwoven fabric with 25% conductive steel fiber were, respectively, 6 dB at 0-300 MHz low frequency, 12 dB at 300-1200 MHz medium frequency and 18 dB at 1200-3000 MHz high frequency. It was found that 90% of electromagnetic waves were shielded by nonwoven fabric at high frequencies, 85% at medium frequencies and 80% at low frequencies.
  • Publication
    Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres
    (INST CHEMICAL FIBRES, 2018) SANCAK, ERHAN; Ozen, Mustafa Sabri; Usta, Ismail; Yuksek, Metin; Sancak, Erhan; Soin, Navneet
    The electromagnetic shielding effectiveness (EMSE) of needle punched, nonwoven fabrics produced using staple stainless steel and carbon fibres was investigated. Utilising carding and large scale industrial type needle punching machines, webs of staple stainless steel and carbon fibres were produced, which were subsequently bonded on the needle punching machine at approximately 132 punches/cm(2) and 13.5 mm needle penetration depth. The effect of varying the carbon fibre content was studied by varying the blend ratio of stainless steel and carbon fibres between 5-20%. EMSE measurements of as-produced needle punched nonwoven fabrics were carried out using the coaxial transmission line method (ASTM D4935-10) in the frequency range of 15-3000 MHz. Within the range, the EMSE values were enhanced from 22.3 dB (95/5, stainless steel/carbon) to 44.7 dB (80/20, stainless steel/carbon), which was attributed to the enhanced conductivity of the fabrics. In fact, the surface resistivity of the samples decreased from 5.80E + 3 Omega to 2.43E + 2 Omega, enhanced for 95: 5 and 80: 20 stainless steel/carbon blends.
  • Publication
    Investigation of electromagnetic shielding effectiveness of needle punched nonwoven fabrics with staple polypropylene and carbon fibres
    (TAYLOR & FRANCIS LTD, 2016) SANCAK, ERHAN; Ozen, Mustafa Sabri; Sancak, Erhan
    Conductive needle punched nonwoven fabrics are developed from staple polypropylene (PP) and varying weight fractions (10, 20 and 30 wt.%) of staple carbon fibres. A fibrous webs of staple PP and carbon fibres were formed at a wool-type carding machine, and these webs subsequently bonded on needle punching machine with 132 punches/cm(2) and 13.5 mm needle penetration depth. The electromagnetic shielding effectiveness (EMSE), absorption and reflection characteristics of as-produced needle punched nonwoven fabrics were determined using a network analyser as specified in ASTM D4935-10 in the frequency range 15-3000 MHz. The surface resistivity measurements were carried out in accordance with ASTM D 257-07 standard. These results indicate that the EMSE values increase incrementally with frequency in the 15-3000 MHz range. The nonwoven sample with 30 wt.% carbon fibre showed the lowest surface resistivity of 3.348 k Omega and corresponding highest EMSE of similar to 42.1 dB in the 3000 MHz frequency range. In comparison, the highest EMSE values from 10 to 20 wt.% staple carbon fibre were found to be 15.6 and 32.2 dB in the 3000 MHz frequency, respectively. It was observed that the absorbance and reflectance curves of each nonwoven fabric move at opposite directions to each other. It was found that as the amount of carbon fibre in the nonwoven fabric increases, absorbance values decrease, but reflectance values increase. The resultant nonwoven fabric samples are expected to be used as garment interlining after thermal bonding and wall interlayer in the future.
  • Publication
    The effect of needle-punched nonwoven fabric thickness on electromagnetic shielding effectiveness
    (SAGE PUBLICATIONS LTD, 2015) SANCAK, ERHAN; Ozen, Mustafa Sabri; Sancak, Erhan; Akalin, Mehmet
    In this study, the effect of nonwoven fabric thickness on electromagnetic shielding effectiveness (EMSE) was investigated and there was found to be a correlation between the thickness of needle-punched nonwoven fabric and EMSE. The production of needle-punched nonwoven fabrics from stainless steel staple fiber in the experimental study was carried out. Stainless steel staple fibers provided by Bekaert were used as a raw material. The webs were formed using a wool-type carding machine. The webs were bonded using needling punching machines. The pre-needled, twice-needled and thrice-needled nonwoven fabrics at three different thicknesses were produced. The experimental studies were carried out using large-scale production machines instead of small-scale laboratory-type machines. EMSE measurements of produced needle-punched nonwoven fabrics, in addition to physical properties such as strength, elongation and thickness, were performed. The coaxial transmission line method specified in ASTM D4935-10 was utilized to test the nonwoven fabrics and the needle-punched nonwoven fabrics were tested in the frequency range from 15 to 3000 MHz. It was understood that needle-punched nonwoven fabric thickness was a very important parameter for EMSE. It was found that as the frequency increases, EMSE values of needle-punched nonwoven fabrics showed continuously increasing tendency by starting from a specific frequency in the frequency range of 15-3000MHz. There were no significant differences between absorption and reflection values of needle-punched nonwoven fabrics produced at different thicknesses. It was found that pre-needle-punched, twice-needled and thrice-needle-punched nonwoven fabrics produced from the conductive stainless steel staple fibers in our study have, respectively, highest EMSE values of 22, 25 and 27 dB between 2100 and 2400 high frequency ranges.