Person:
ÇETİNEL, ŞULE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÇETİNEL

First Name

ŞULE

Name

Search Results

Now showing 1 - 10 of 13
  • Publication
    Oxytocin alleviates oxidative renal injury in pyelonephritic rats via a neutrophil-dependent mechanism
    (ELSEVIER SCIENCE INC, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Biyikli, Nese Karaaslan; Tugtepe, Halil; Sener, Goksel; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Midillioglu, Sukru; Gedik, Nursal; Yegen, Berrak C.
    Background: Urinary tract infection (UTI) may cause inflammation of the renal parenchyma and may lead to impairment in renal function and scar formation. Oxidant injury and reactive oxygen species (ROS) have been found responsible in the pathogenesis of UTI. The neurohypophyseal hormone oxytocin (OT) facilitates wound healing and is involved in the modulation of immune and inflammatory processes. We investigated the possible therapeutic effects of OT against Eschericia coli induced pyelonephritis in rats both in the acute and chronic setting. Methods: Twenty-four Wistar rats were injected 0.1 ml solution containing E. coli ATCC 25922 10(10) colony forming units/ml into left renal medullae. Six rats were designed as sham group and were given 0.1 ml 0.9% NaCl. Pyelonephritic rats were treated with either saline or OT immediately after surgery and at daily intervals. Half of the pyelonephritic rats were decapitated at the 24th hour of E. coli infection, and the rest were followed for 7 days. Renal function tests (urea, creatinine), systemic inflammation markers [lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha)] and renal tissue malondialdehyde (MDA) as an end product of lipid peroxidation, glutathione (GSH) as an antioxidant parameter and myeloperoxidase (MPO) as an indirect index of neutrophil infiltration were studied. Results: Blood urea, creatinine, and TNF-a levels were increased, renal tissue MDA and MPO levels were elevated and GSH levels were decreased in both of the pyelonephritic (acute and chronic) rats. All of these parameters and elevation of LDH at the late phase were all reversed to normal levels by OT treatment. Conclusion: OT alleviates oxidant renal injury in pyelonephritic rats by its anti-oxidant actions and by preventing free radical damaging cascades that involves excessive infiltration of neutrophils. (c) 2006 Elsevier Inc. All rights reserved.
  • Publication
    alpha-lipoic acid protects against renal ischaemia-reperfusion injury in rats
    (BLACKWELL PUBLISHING, 2008) YÜKSEL, MERAL; Sehirli, Oezer; Sener, Emre; Cetinel, Ule; Yueksel, Meral; Gedik, Nursal; Sener, Goeksel
    1. Oxygen free radicals are important components involved in the pathophysiological processes observed during ischaemia-reperfusion (I/R). The present study was designed to assess the possible protective effect of et-lipoic acid (ALA) on renal I/R injury. 2. Wistar albino rats were unilaterally nephrectomized and subjected to 45 min renal pedicle occlusion followed by 24 h reperfusion. Saline or ALA (100 mg/kg, i.p.) was administered 15 min prior to ischaemia and immediately before the reperfusion period. At the end of 24 h, rats were decapitated and trunk blood was collected. Creatinine, blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) activity were measured in serum samples, whereas tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, IL-6, 8-hydroxydeoxyguanosine (8-OHdG) and total anti-oxidant capacity (AOC) were assayed in plasma samples. 3. Kidney samples were taken for the determination of tissue malondialdehyde (MDA) and glutathione (GSH) levels, as well as Na/K-ATPase and myeloperoxidase (MPO) activity. The formation of reactive oxygen species in renal tissue samples was monitored using a chemiluminescence (CL) technique with luminol and lucigenin probes. Oxidant-induced tissue fibrosis was determined by tissue collagen content and the extent of tissue injury was analysed microscopically. 4. Ischaemia-reperfusion caused a significant increases in blood creatinine, BUN, LDH, IL-1 beta, IL-6, TNF-alpha and 8-OHdG, whereas AOC was decreased. In kidney samples from the I/R group, MDA, MPO, collagen and CL levels were found to be increased significantly; however, glutathione levels and Na/KATPase activity were decreased. Conversely, ALA treatment reversed all these biochemical indices, as well as histopathological alterations induced by I/R. 5. In conclusion, these data suggest that ALA reverses I/R-induced oxidant responses and improves microscopic damage and renal function. Thus, it seems likely that ALA protects kidney tissues by inhibiting neutrophil infiltration, balancing the oxidant-anti-oxidant status and regulating the generation of inflammatory mediators.
  • Publication
    The protective effect of oxytocin on renal ischemia/reperfusion injury in rats
    (ELSEVIER SCIENCE BV, 2007) YEGEN, BERRAK; Tugtepe, Halil; Sener, Goksel; Biyikli, Nese Karaaslan; Yuksel, Meral; Cetinel, Sule; Gedik, Nursal; Yegen, Berrak C.
    Aim: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. Materials and methods: Male Wistar albino rats (250-300 g) were unilaterally nephrectornized, and subjected to 45 min of renal pedicle occlusion followed by 6 It of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. Results: The results revealed that I/R injury increased (p < 0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to l/R injury were attenuated by OT treatment (P < 0.05-0.001). Conclusions: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage. (c) 2006 Elsevier B.V. All rights reserved.
  • Publication
    Protective and therapeutic effects of resveratrol on acetic acid-induced gastric ulcer
    (TAYLOR & FRANCIS LTD, 2009) YEGEN, BERRAK; Solmaz, Ali; Sener, Goeksel; Cetinel, Sule; Yueksel, Meral; Yegen, Cumhur; Yegen, Berrak C.
    Sprague Dawley rats of both sexes were injected with either saline or RVT (10 mg/kg) either before or after acetic acid ulcer induction and decapitated 3, 5 or 10 days after ulcer. In the saline-treated ulcer groups, macroscopically evident ulcers were observed, while RVT-pretreated or RVT-treated groups had lower macroscopic ulcer scores. Likewise, the microscopic damage scores were lower for the RVT-administered groups. Gastric myeloperoxidase activity, malondialdehyde, collagen and tumour necrosis factor-alpha levels, as well as luminol- and lucigenin-enhanced chemiluminescence levels that were elevated in the saline-administered ulcer groups, were depressed with both RVT-pretreatment and RVT-treatment. Moreover, depleted glutathione levels in the ulcer groups were increased back to control levels by both pre- and post-treatments of RVT. Results demonstrate that resveratrol has both protective and therapeutic effects on oxidative gastric damage by suppressing pro-inflammatory cascades, including the activation of pro-inflammatory cytokines, accumulation of neutrophils and release of oxygen-derived free radicals.
  • Publication
    Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats
    (KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, Goksel
    Background/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.
  • Publication
    Resveratrol reduces renal and lung injury caused by sepsis in rats
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2006) ŞENER, GÖKSEL; Kolgazi, Meltem; Sener, Goksel; Cetinel, Sule; Gedik, Nursal; Alican, Inci
    Resveratrol (3,5,4'-trans-trihydroxystilbene), a natural phytoalexin, has various pharmacological effects, including anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and expression of inflammatory mediators. The present study was aimed to investigate the possible beneficial activities of resveratrol on lung and kidney damage in a rat model of sepsis. Materials and methods. Sepsis was induced to Sprague-Dawley rats of both sexes (200-250 g) by cecal ligation and perforation. The rats were treated with resveratrol (30 mg/kg; i.p.) or saline after induction of sepsis and at 16 h. Twenty-four hours after the sepsis-induction, all rats were decapitated. Blood was collected for the measurement of tumor necrosis factor-a level and lactate dehydrogenase activity. Lung and kidney samples were taken for histological assessment and for the measurement of malondialdehyde, glutathione level, myeloperoxidase activity, and collagen content. Results. Sepsis caused a significant increase in malondialdehyde levels, myeloperoxidase activity, and collagen content of the lung and kidney tissues with a concomitant reduction in glutathione levels. Microscopic examination revealed severe destruction of regular morphology in both lung and kidney tissues. Serum tumor necrosis factor-a and lactate dehydrogenase levels also were higher in rats with sepsis compared to those of the sham group. Resveratrol treatment reversed these biochemical parameters and preserved tissue morphology as evidenced by histological evaluation. Conclusions. Resveratrol, a phenolic compound, reduces sepsis-induced remote organ injury, at least in part, through its ability to balance oxidant-antioxidant status, to inhibit neutrophil infiltration and to regulate the release of inflammatory mediators. (c) 2006 Elsevier Inc. All rights reserved.
  • Publication
    Leukotriene D4 receptor antagonist montelukast alleviates water avoidance stress-induced degeneration of the gastrointestinal mucosa
    (ELSEVIER SCI LTD, 2008) ERCAN, FERİHA; Ersoy, Yasemin; Cikler, Esra; Cetinel, Sule; Sener, Goekel; Ercan, Feriha
    We investigated the role of montelukast (ML), a cysteinyl leukotriene-1 receptor antagonist, on the water avoidance stress (WAS)induced degeneration of the rat gastric, ileal and colonic mucosa. One group of Wistar albino rats were exposed to chronic WAS (WAS group) 2 h daily for 5 days. Another group was administered ML (10 mg/kg; i.p.; WAS + ML group) following every WAS exposure for 5 days. Control rats were injected with the vehicle solution only. The stomach, ileum and colon were dissected and investigated for histopathological changes with a light microscope as well as for topographical changes with a scanning electron microscope. The levels of malondialdehyde (MDA, a biomarker of oxidative damage) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. In the WAS group, the stomach epithelium showed ulceration in some areas, dilatations of the gastric glands, degeneration of gastric glandular cells, and prominent congestion of the capillaries. In a similar fashion, degenerated epithelium and severe vascular congestions were observed in the ileum and colon. In all the tissues dense inflammatory cell infiltration and mast cell degranulation in mucosa were observed. The levels of MDA were significantly increased whereas those of GSH were significantly decreased in all test tissues in the WAS group compared to the control group. The morphology of gastric, ileal and colonic mucosa in WAS + ML group showed a significant amelioration showing a reduction in inflammatory cell infiltration and mast cell degranulation. Increased NIDA and decreased GSH levels in the WAS group were also ameliorated with ML treatment. Based on the results, ML supplement seems attenuated inflammatory effects of WAS induction in gastrointestinal mucosa. (C) 2008 Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    The effects of Urtica dioica L. ethanolic extract against urinary calculi in rats
    (MARMARA UNIV, 2020-03-12) DOĞAN, AHMET; Keles, Rumeysa; Sen, Ali; Ertas, Busra; Kayali, Damla; Eker, Pinar; Sener, Tarik Emre; Dogan, Ahmet; Cetinel, Sule; Sener, Goksel
    Nephrolithiasis is common urological problem and stone formation has multiple underlying pathogenetic factors. We investigated the possible preventive and therapeutic effect of Urtica dioica ethanol extract (UD) on ethylene glycol-induced nephrolithiasis model in rats. Sprague-Daw ley rats were divided into lour groups (n = 10). The control group was given normal drinking water for 8 weeks and was administered vehicle by gastric gavage. Stone formation was induced by adding 0.75% ethylene glycol (EG) to their drinking water. UD (700 mg/kg) was given orally lor 8 weeks to the preventive group and I or last 4 weeks to the treatment respectively. At the end of the experiment, urine, blood samples and kidney tissues were obtained. In 24-hour urine samples, calcium and citrate levels were decreased and oxalate levels were increased in EG whereas LID treatment groups reversed these parameters back to control levels. In addition, serum levels of creatinine and urea were increased in EG while LID significantly reduced these parameters. Malondialdehyde, 8-hydroxydeoxyguanosine and tumor necrosis alpha levels, and caspase- 3 and N-acetyl-beta-glucosaminidase activities were elevated in EG group and showed a decrease in LID treated groups. Glutathione level was decreased in EG group, whereas it was increased in UD preventive group. Histological examination showed an improvement in UD treated groups. Our results suggest that UD is effective both in prevention and treatment for kidney stones. The mechanism underlying this effect may be the antioxidant effect of UD and the effect on the concentration of stone-forming components in the urine.
  • Publication
    Taurine ameliorates water avoidance stress-induced degenerations of gastrointestinal tract and liver
    (SPRINGER, 2006) ERCAN, FERİHA; Zeybek, Ali; Ercan, Feriha; Cetinel, Sule; Cikler, Esra; Saglam, Beyhan; Sener, Goksel
    We investigated the role of taurine, is a potent free radical scavenger, on water avoidance stress (WAS)induced degeneration of the gastric, ileal, and colonic mucosa and liver parenchyma. Wistar albino rats were exposed to chronic WAS (WAS group) 2 hr daily for 5 days. After exposing animals to chronic WAS (WAS + taurine group), 50 mg/kg taurine was injected IP for 3 days. Control animals received vehicle solution only. The stomach, ileum, colon, and liver samples were investigated under light microscope for histopathologic changes. To demonstrate the topography of the luminal mucosa of the stomach, ileum, and colon, scanning electron microscope was used and for hepatocyte ultastructure transmission electron microscope was used. Malondialdehyde (MDA, a biomarker of oxidative damage) and glutathione (GSH, a biomarker of protective oxidative injury) levels were also determined in all tissues. In the WAS group, the stomach epithelium showed ulceration in some areas, dilatations of the gastric glands, and degeneration of gastric glandular cells; prominent congestion of the capillaries was apparent. In the WAS group, severe vascular congestion was observed along with degeneration of ileal and colonic epithelium. Prominent vascular congestion and dilated sinusoids, activated Kupffer cells, dilated granular endoplasmic reticulum membranes, and focal pyknotic nuclei were observed in liver parenchyma. MDA levels (stomach, P < 0.01; ileum, colon, and liver P < 0.05) were increased and GSH levels (P < 0.01) were decreased in all tissues in the WAS group compared with the control group. The morphology of gastric, ileal, and colonic mucosa and liver parenchyma in the WAS + taurine group (stomach and ileum, P < 0.05; colon and liver, P < 0.01) showed a significant amelioration when compared to the WAS g roup. Increased MDA and decreased GSH levels in the WAS group were ameliorated with taurine treatment. Based on the results, taurine supplementation effectively attenuates the oxidative damage of gastrointestinal mucosa and liver because of WAS induction possibly by its antioxidant effects.
  • Publication
    beta-Glucan protects against chronic nicotine-induced oxidative damage in rat kidney and bladder
    (ELSEVIER SCIENCE BV, 2007) ŞENER, GÖKSEL; Sener, Goksel; Toklu, Hale Z.; Cetinel, Sule
    In this study, we investigated the protective effect of P-glucan against nicotine induced oxidative damage in urinary bladder and kidney tissues. Wistar albino rats were injected i.p. with nicotine hydrogen bitartarate (0.6 mg/kg daily for 21 days) or saline. P-Glucan (50 mg/kg, p.o.) was administered alone or with nicotine injections for 21 days. After decapitation, the urinary bladder and kidney tissues were taken for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Tissue samples were also examined histologically. In serum samples NIDA, GSH, BUN, creatinine, TNF-alpha levels and LDH activity were analyzed. Chronic nicotine administration caused a significant decrease in GSH levels and increases in NIDA levels and MPO activity in kidney and bladder tissues, suggesting oxidative organ damage, which was also histologically verified. Furthermore, P-glucan restored the reduced GSH levels, while it significantly decreased NIDA levels and MPO activity. Renal function tests, LDH and TNF-alpha levels, which were increased significantly due to nicotine administration, were decreased with beta-glucan treatment. The present data suggest that beta-glucan supplementation effectively counteracts the chronic nicotine toxicity and attenuates oxidative damage of bladder and kidney tissues possibly by its antioxidant effects. (c) 2006 Elsevier B.V. All rights reserved.