Person:
ÇETİNEL, ŞULE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÇETİNEL

First Name

ŞULE

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    The Effects of Melatonin on Ethylene Glycol-induced Nephrolithiasis: Role on Osteopontin mRNA Gene Expression
    (ELSEVIER SCIENCE INC, 2017) ŞENER, GÖKSEL; Sener, Tarik Emre; Sener, Goksel; Cevik, Ozge; Eker, Pinar; Cetinel, Sule; Traxer, Olivier; Tanidir, Yiloren; Akbal, Cem
    OBJECTIVE To evaluate the protective effects of melatonin (Mel) on an ethylene glycol (EG)-induced nephrolithiasis model in rats. MATERIALS AND METHODS Thirty-two Wistar albino rats were divided into 4 groups: control, EG, prevention Mel (Mel + EG + Mel), and therapeutic Mel (EG + Mel). EG (0.75%) was added to drinking water to create nephrolithiasis model. The EG group received EG and the Mel + EG + Mel group received both EG and Mel for 8 weeks. In the EG + Mel group, EG is given for 8 weeks and Mel is given for the last 4 weeks of the experiment. At the end of experimental period, urine, blood samples, and tissues were collected. RESULTS In 24-hour urine samples, calcium, citrate, and creatinine levels were decreased and oxalate levels were increased in the EG group, whereas Mel prevention and Mel treatment reversed these parameters back to control levels. Malondialdehyde, glutathione activities, myeloperoxidase, superoxide dismutase levels, and caspase-3 activity showed improvements in the Mel-treated groups when compared with the EG group. 8-Hydroxydeoxyguanosine, matrix metalloproteinase 9 levels, N-acetyl-beta-glucosaminidase activity, and osteopontin mRNA expression were elevated in the EG group and decreased back to control levels in the Mel + EG + Mel and EG + Mel groups. Histological examination showed improvement in the Mel-treated groups when compared with the EG group. CONCLUSION Mel can prevent crystalluria and kidney damage due to crystal formation and aggregation. It can be considered as a potential prophylactic and protective agent in high-risk patients with urinary stone formation or recurrence if supported by further clinical studies. (C) 2016 Elsevier Inc.
  • Publication
    Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines
    (ELSEVIER SCIENCE INC, 2008) YEGEN, BERRAK; Sehirli, Oezer; Sener, Emre; Sener, Goeksel; Cetinel, Sule; Erzik, Can; Yegen, Berrak C.
    Mechanisms of burn-induced skin and remote organ injury involve oxidant generation and the release of pro-inflammatory cytokines. In this study the possible antioxidant and anti-inflammatory effects of ghrelin were evaluated in a rat model of thermal trauma. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. Ghrelin, was administered subcutaneously (10 ng/kg/day) after the burn injury and repeated twice daily. Rats were decapitated at 6 h and 48 h after burn injury and blood was collected for the analysis of pro-inflammatory cytokines (TNF-alpha and IL-1 beta), lactate dehydrogenase (LDH) activity and antioxidant capacity (AOC). In skin, lung and stomach tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+-ATPase activity were measured in addition to the histological analysis. DNA fragmentation ratio in the gastric mucosa was also evaluated. Burn injury caused significant increase in both cytokine levels, and LDH activity, while plasma ACC was found to be depleted after thermal trauma. On the other hand, in tissue samples the raised MDA levels, MPO activity and reduced GSH levels, Na+-K+-ATPase activity due to burn injury were found at control levels in ghrelin-treated groups, while DNA fragmentation in the gastric tissue was also reduced. According to the findings of the present study, ghrelin possesses a neutrophil-dependent anti-inflammatory effect that prevents burn-induced damage in skin and remote organs and protects against oxidative organ damage. (C) 2008 Elsevier Inc. All rights reserved.
  • Publication
    Lycopene inhibits caspase-3 activity and reduces oxidative organ damage in a rat model of thermal injury
    (ELSEVIER SCI LTD, 2012) ŞENER, GÖKSEL; Cevik, Ozge; Oba, Rabia; Macit, Caglar; Cetinel, Sule; Kaya, Ozlem Tugce Cilingir; Sener, Emre; Sener, Goksel
    Oxidative stress has been implicated in various pathological processes including burn induced multiple organ damage. This study investigated the effects of lycopene treatment against oxidative injury in rats with thermal trauma. Under ether anesthesia, shaved dorsum of the rats was exposed to 90 degrees C bath for 10 s to induce burn and treated either vehicle (olive oil) or lycopene (50 mg/kg orally). Rats were decapitated 48 h after injury and the tissue samples from lung and kidney were taken for histological analysis and the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT) and caspase-3 activities. Proinflammatory cytokines, TNF-alpha and IL-1 beta, were assayed in blood samples. Severe skin scald injury caused a significant decrease in GSH levels, SOD and CAT activities, and significant increases in MDA levels, MPO and caspase-3 activities of tissues. Similarly, plasma TNF-alpha and IL-1 beta. were elevated in the burn group as compared to the control group. Lycopene treatment reversed all these biochemical indices. According to the findings of the present study, lycopene possesses antiinflammatory, antiapoptotic and antioxidant effects that prevents burn-induced oxidative damage in remote organs. (C) 2012 Elsevier Ltd and ISBI. All rights reserved.