Person:
ÇETİNEL, ŞULE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÇETİNEL

First Name

ŞULE

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    alpha-lipoic acid protects against renal ischaemia-reperfusion injury in rats
    (BLACKWELL PUBLISHING, 2008) YÜKSEL, MERAL; Sehirli, Oezer; Sener, Emre; Cetinel, Ule; Yueksel, Meral; Gedik, Nursal; Sener, Goeksel
    1. Oxygen free radicals are important components involved in the pathophysiological processes observed during ischaemia-reperfusion (I/R). The present study was designed to assess the possible protective effect of et-lipoic acid (ALA) on renal I/R injury. 2. Wistar albino rats were unilaterally nephrectomized and subjected to 45 min renal pedicle occlusion followed by 24 h reperfusion. Saline or ALA (100 mg/kg, i.p.) was administered 15 min prior to ischaemia and immediately before the reperfusion period. At the end of 24 h, rats were decapitated and trunk blood was collected. Creatinine, blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) activity were measured in serum samples, whereas tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, IL-6, 8-hydroxydeoxyguanosine (8-OHdG) and total anti-oxidant capacity (AOC) were assayed in plasma samples. 3. Kidney samples were taken for the determination of tissue malondialdehyde (MDA) and glutathione (GSH) levels, as well as Na/K-ATPase and myeloperoxidase (MPO) activity. The formation of reactive oxygen species in renal tissue samples was monitored using a chemiluminescence (CL) technique with luminol and lucigenin probes. Oxidant-induced tissue fibrosis was determined by tissue collagen content and the extent of tissue injury was analysed microscopically. 4. Ischaemia-reperfusion caused a significant increases in blood creatinine, BUN, LDH, IL-1 beta, IL-6, TNF-alpha and 8-OHdG, whereas AOC was decreased. In kidney samples from the I/R group, MDA, MPO, collagen and CL levels were found to be increased significantly; however, glutathione levels and Na/KATPase activity were decreased. Conversely, ALA treatment reversed all these biochemical indices, as well as histopathological alterations induced by I/R. 5. In conclusion, these data suggest that ALA reverses I/R-induced oxidant responses and improves microscopic damage and renal function. Thus, it seems likely that ALA protects kidney tissues by inhibiting neutrophil infiltration, balancing the oxidant-anti-oxidant status and regulating the generation of inflammatory mediators.
  • Publication
    The protective effect of oxytocin on renal ischemia/reperfusion injury in rats
    (ELSEVIER SCIENCE BV, 2007) YEGEN, BERRAK; Tugtepe, Halil; Sener, Goksel; Biyikli, Nese Karaaslan; Yuksel, Meral; Cetinel, Sule; Gedik, Nursal; Yegen, Berrak C.
    Aim: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. Materials and methods: Male Wistar albino rats (250-300 g) were unilaterally nephrectornized, and subjected to 45 min of renal pedicle occlusion followed by 6 It of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. Results: The results revealed that I/R injury increased (p < 0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to l/R injury were attenuated by OT treatment (P < 0.05-0.001). Conclusions: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage. (c) 2006 Elsevier B.V. All rights reserved.
  • Publication
    Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats
    (KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, Goksel
    Background/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.