Person:
ÇETİNEL, ŞULE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÇETİNEL

First Name

ŞULE

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Investigation of the Effects of Edaravone on Valproic Acid Induced Tissue Damage in Pancreas
    (MARMARA UNIV, FAC PHARMACY, 2017-06-20) YARAT, AYŞEN; Oktay, Sehkar; Alev-Tuzuner, Burcin; Tunali, Sevim; Ak, Esin; Emekli-Alturfan, Ebru; Tunali-Akbay, Tugba; Koc-Ozturk, Leyla; Cetinel, Sule; Yanardag, Refiye; Yarat, Aysen
    Valproic acid (VPA), an effective antiepileptic and anticonvulsant drug, has some toxic side effects due to causing elevated oxidant production. The aim of this study is to investigate the effects of edaravone, a potent free radical scavenger on VPA induced toxicity and tissue damage by biochemical and histological examinations on pancreas. Female Sprague Dawley rats were divided into four groups as follows; control, edaravone, VPA, VPA+edaravon. VPA and edaravone were injected intraperitonally for seven days. Total protein, lipid peroxidation (LPO), sialic acid (SA) and glutathione (GSH) levels and alkaline phosphatase (ALP), tissue factor (TF), superoxide dismutase (SOD), glutathione-S-transferase GST), catalase (CAT), glutathione peroxidase (GPx) and myeloperoxidase (MPO) activities were determined in pancreas homogenates. In VPA given group, LPO and SA levels, and ALP, TF, MPO activities significantly increased and GST, CAT, GPx activities significantly decreased compared to control group. A marked morphological damage was detected in the VPA group. Ameliorative effects of edaravone were observed in SA, TF, CAT, GPx parameters and histological examination in the VPA group. Therefore, edaravone may be effective in moderation and/or reduction of toxic effects of VPA on pancreas.
  • PublicationOpen Access
    Protective effect of betaine against burn-induced pulmonary injury in rats
    (TURKISH ASSOC TRAUMA EMERGENCY SURGERY, 2015) YEGEN, BERRAK; Sehirli, Ahmet Ozer; Satilmis, Burcu; Tetik, Sermin; Cetinel, Sule; Yegen, Berrak; Aykac, Asli; Sener, Goksei
    BACKGROUND: This study was designed to determine possible protective effect of betaine treatment against oxidative injury in pulmonary tissue induced with thermal trauma. METHODS: Under ether anesthesia, shaved dorsum of Wistar albino rats was exposed to a 90 degrees C water bath for 10 seconds to induce burn injury. Betaine was administered orally (250 mg/kg) for a period of 21 days before burn injury, and single dose of betaine was administered after thermal injury. Control group rats were exposed to 25 degrees C water bath for 10 seconds. Upon conclusion of experiment, rats were decapitated and blood was collected for analysis of pro-inflammatory cytokines and lactate dehydrogenase (LDH) activity. Lung tissue samples were taken to determine malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+/K+-ATPase activity, in addition to histological analysis. RESULTS: Burn injury caused significant increase in both cytokine levels and LDH activity. In lung samples, raised MDA levels, MPO activity, and reduced GSH levels and Na+/K+-ATPase activity were found due to burn injury. CONCLUSION: Treatment of rats with betaine significantly restored GSH level and Na+/K+-ATPase activity, and decreased MDA level and MPO activity. According to the findings of the present study, betaine significantly diminishes burn-induced damage in tissue.
  • PublicationOpen Access
    The protective effect of spironolactone and role of the Na+/K+-ATPase pump on intestinal ischemia/reperfusion injury
    (MARMARA UNIV, 2018-07-02) VELİOĞLU ÖĞÜNÇ, AYLİZ; Akyuz, Cebrail; Uzun, Orhan; Sunamak, Oguzhan; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Sehirli, Ahmet Ozer
    The aim of this study was to evaluate the possible protective effect of spironolactone (SPL) and role of the Na-K ATPase pump on intestinal ischemia/reperfusion injury. In our study, the period of ischemia was established by clamping the mesenteric artery for 45 minunder anesthesia in Wistar albino rats and the animals left for reperfusion at the end of this period were decapitated after one hour. Spironolactone (20 mg kg(-1)) was administered orally for three days before ischemia, 30 minbefore ischemia. The control group rats were subjected to the Sham operation and administered saline solution. TNF-alpha and IL-1 beta levels were measured in the serum samples. Ileal Na+/K+-ATPase, myeloperoxidase (MPO) analysis were performed. Structural injury was assessed histopathologically. Ischemia/reperfusion increased serum TNF-alpha and IL-1 beta levels together with MPO activity, whereas these values were maintained at the control group levels through SPL activation. However, ischemia/reperfusion decreased Na+/K+-ATPase activity in ileal tissues; however, these parameters were found to be significantly increased with SPL activation. The protective effect of SPL against ischemia/reperfusion injury by different mechanisms, mainly the activity of the Na+/K+-ATPase pump, suggests that this nontoxic agent may constitute a new clinical therapeutic principle.
  • PublicationOpen Access
    The preventive and curative effects of melatonin against abdominal aortic aneurysm in rats
    (MOSBY-ELSEVIER, 2018-05) ARSAN, SİNAN; Tekin, Gozde; Isbir, Selim; Sener, Goksel; Cevik, Ozge; Cetinel, Sule; Dericioglu, Okan; Arsan, Sinan; Cobanoglu, Adnan
    Objective: Oxygen free radicals are important components involved in the histopathologic tissue alterations observed during abdominal aortic aneurysms (AAAs). This study examined whether melatonin has protective or therapeutic effects against AAAs. Methods: Sprague-Dawley rats were divided into four groups. A CaCl2 model was used to induce AAA. Starting on the operation day (Mel+AAA+Mel group) or 4 weeks after the operation (AAA+Mel group), the rats received intraperitoneal melatonin (10 mg/kg/day) for 6 and 2 weeks, respectively. The control and AAA groups received vehicle for 2 weeks after the sham operation and AAA induction, respectively. Angiographic measurements were recorded at the beginning, week 4, and week 6 of the study. After decapitation, aorta tissues were taken for the measurement of malondialdehyde, 8-hydroxy-2'-deoxyguanosine, glutathione levels, and myeloperoxidase and caspase-3 activity. Matrix metalloproteinase (MMP)-2, MMP-9, tumor necrosis factor-a, and inducible nitric oxide synthase protein expressions were analyzed by Western blot technique. Aortic tissues were also examined by light microscopy. Results: CaCl2 caused an inflammatory response and oxidative damage indicated by rises in malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. Myeloperoxidase and caspase-3 activities were increased, but glutathione levels were reduced. On the one hand, MMP-2, MMP-9, tumor necrosis factor-a, and inducible nitric oxide synthase protein expressions were increased in the vehicle-treated AAA group. On the other hand, melatonin treatment reversed all of these biochemical indices and histopathologic alterations. Conclusions: According to the data, although melatonin tended to reverse the biochemical parameters given on week 4, the preventive effect is more pronounced when given concomitantly with AAA induction because values were closer to the control levels.
  • PublicationOpen Access
    Neuroprotective Effects of Alpha-Lipoic Acid in Experimental Spinal Cord Injury in Rats
    (TAYLOR & FRANCIS LTD, 2010-01) VELİOĞLU ÖĞÜNÇ, AYLİZ; Toklu, Hale Z.; Hakan, Tayfun; Celik, Hasan; Biber, Necat; Erzik, Can; Ogunc, Ayliz V.; Akakin, Dilek; Cikler, Esra; Cetinel, Sule; Ersahin, Mehmet; Sener, Goksel
    Background: Oxidative stress is a mediator of secondary injury to the spinal cord following trauma. Objective: To investigate the putative neuroprotective effect of a-lipoic acid (LA), a powerful antioxidant, in a rat model of spinal cord injury (SCI). Methods: Wistar albino rats were divided as control, vehicle-treated SCI, and LA-treated SCI groups. To induce SCI, a standard weight-drop method that induced a moderately severe injury (100 g/cm force) at T10 was used. Injured animals were given either 50 mg/kg LA or saline at 30 minutes postinjury by intraperitoneal injection. At 7 days postinjury, neurologic examination was performed, and rats were decapitated. Spinal cord samples were taken for histologic examination or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and DNA fragmentation. Formation of reactive oxygen species in spinal cord tissue samples was monitored by using a chemiluminescence (CL) technique. Results: SCI caused a significant decrease in spinal cord GSH content, which was accompanied with significant increases in luminol CL and MDA levels, MPO activity, and DNA damage. Furthermore, LA treatment reversed all these biochemical parameters as well as SO-induced histopathologic alterations. Conversely, impairment of the neurologic function caused by SCI remained unchanged. Conclusion: The present study suggests that LA reduces SCI-induced oxidative stress and exerts neuroprotection by inhibiting lipid peroxidation, glutathione depletion, and DNA fragmentation.