Person: ÖZBAŞ, SUNA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÖZBAŞ
First Name
SUNA
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Metadata only The cellular uptake and endosomal escape mechanisms of chitosan-protamine-siRNA nanoplexes for efficient gene transfection and silencing(2021-09-11) EKENTOK ATICI, CEYDA; ÖZBAŞ, SUNA; CÖMEZ, BİRNUR; ŞALVA E., EKENTOK C., CÖMEZ B., ÖZBAŞ S., AKBUĞA F. J.Aim: The use of antisense-based molecules in gene expression inhibition has allowed the design of a new pathway for therapeutics. In order to ensure that oligonucleotides with gene silencing potential can be used effectively in therapy, a suitable carrier system is required that can be transported to the target site. In this study, gene silencing activities of siRNA targeted to the LacZ gene were compared and the gene delivery capabilities, transfection efficiency, cellular uptake and endosomal escape mechanisms of nanoplexes prepared with siRNA and chitosan/protamine polymers were investigated. Material and methods: Nanoplex formulations were prepared by simple complexation method of chitosan/protamine polymers and oligonucleotides. The particle size and zeta potential of the prepared nanoplexes were measured, and their serum and enzyme stability were investigated. In order to determine the transfection and gene silencing activities of the selected formulations, HEK293 cells stably expressing beta-gal were prepared, inhibition of beta-gal protein was measured by enzymatic assay and suppression by X-gal method was evaluated microscopically. Cellular uptake and endosomal escape mechanisms of nanoplexes were studied. Results: Chitosan/Protamine/siLacZ nanoplexes have been observed to protect siRNA against enzymatic and serum degradation for up to 48 hours. It was observed that the transfection efficiency was the highest in the formulations prepared together with chitosan/protamine at a rate of 10/10/1. It was observed that the transfection increased significantly with the increase in the ratio of chitosan and protamine. Transfection efficiency was found to be 88.60% at a rate of 10/10/1. In the cellular uptake study, it was observed that the inhibitor that reduced cellular uptake the most was phenylarsine oxide, and the uptake of siRNA carried by nanoplexes was 56%. There was no decrease in cellular uptake when chlorpromazine hydrochloride inhibitor was administered. This indicated that the nanoplexes were not uptake by clathrin-mediated endocytosis. It was observed that cellular uptake was 75% with colchicine, this inhibitor decreases cellular uptake by inhibiting microtubules in cells. Conclusion: It has been shown that cellular uptake and transfection studies with chitosan/protamine nanoplexes can be used as an effective carrier system for siRNA transport.Publication Metadata only Inhibition of Glomerular Mesangial Cell Proliferation by siPDGF-B- and siPDGFR-beta-Containing Chitosan Nanoplexes(SPRINGER, 2017) ÖZBAŞ, SUNA; Salva, Emine; Turan, Suna Ozbas; Akbuga, JulideMesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-beta. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-beta, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-beta gene silencing efficiencies of PDGF-B and PDGFR-beta targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-beta-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.Publication Open Access In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer(MARMARA UNIV, FAC PHARMACY, 2017-10-03) EKENTOK ATICI, CEYDA; Ekentok, Ceyda; Turan, Suna Ozbas; Akbuga, JulideBreast cancer is the most common cancer worldwide in women and it is highly malignant and fatal. PDGF-D plays role in regulation of many cellular processes such as angiogenesis. PDGF-D is overexpressed in many types of cancers and promote tumor growth and metastasis. Silencing of PDGF-D gene by using shRNA with an appropriate carrier system may decrease tumor growth and metastasis. In our study, we prepared chitosan nanoparticles loaded with five different shRNA plasmids targeting different exons of PDGF-D gene. Then, nanoparticles were characterized in vitro and transfection efficiency of these nanoparticles were investigated in breast cancer cell lines (MCF7, MDA-MB-231 and MDA-MB-435). The effects of single and multiple shRNA sequences, molecular weight of chitosan (150 kDa and 400 kDa) and the amount of shRNA (100 and 500 mu g) on the characterization and transfection efficiencies of nanoparticles have been studied. Size of nanoparticles changed between 200-400 nm and approximately 95-100% encapsulation efficiency were obtained. Release of shRNA changed with the molecular weight of chitosan. It was obtained that formulation containing shRNA plasmid targeting PDGF-D exon 6 (NP1) has the highest silencing efficiency in MDA-MB-231 cell line. It was also evaluated that chitosan can be a suitable gene delivery system for shRNA targeting PDGF-D.Publication Metadata only Comparison of VEGF gene silencing efficiencies of chitosan and protamine complexes containing shRNA(WILEY, 2014) ÖZBAŞ, SUNA; Erdem-Cakmak, Fulden; Ozbas-Turan, Suna; Salva, Emine; Akbuga, JulideVEGF is an angiogenic factor promoting the proliferation and migration of endothelial cells. Inhibition of VEGF by RNAi mechanism is one of the novel and the most important strategies in antiangiogenesis therapy. In this study, the tumor silencing efficiency of ternary complexes after addition of protamine to chitosan complexes containing VEGF targeting shRNA was investigated. Besides chitosan, protamine is an effective gene delivery material. Binary and ternary complexes consisting of chitosan, protamine, and shRNA were prepared to target VEGF, their morphology, size, and zeta potential of the complexes being measured. The average size of the complexes was between 173 and 284nm and zeta potential was between +10 and 16mV. In the ternary complexes, size decreased as the chitosan ratio increased; however, its molecular weight had no effect on the size of complexes. HeLa, HEK293, and MCF-7 cell lines were used for in vitro transfection. VEGF was assayed by ELISA. A higher silencing effect was obtained using ternary complexes. Transgene expression was increased by adding protamine to chitosan complexes. Gene inhibition values in cell lines followed the rank HEK293>HeLa>MCF-7. The addition of protamine to the chitosan/shRNA (VEGF) complexes increased the knockdown of VEGF genes in the cell lines, and no cytotoxicity was found after the complexes had been incorporated into the cells.Publication Metadata only Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression(ELSEVIER SCIENCE BV, 2004) ÖZBAŞ, SUNA; Akbuga, J; Ozbas-Turan, S; Erdogan, NInterleukin-2 (IL-2) expression plasmid (pCXWN-hIL-2) loaded chitosan microspheres were evaluated for using in gene-based immumotherapy. Chitosan microspheres containing pCXWN-hIL-2 were prepared by using a precipitation technique. In addition, the effects of different factors such as the concentration (0.35-0.70%) and the molecular weight of chitosan (low and medium molecular weights), the plasmid amount (5-10 mug/ml) and the presence of glutaraldehyde during the encapsulation process, on microsphere characteristics were investigated. The size of microspheres changed between 1.45 and 2.00 mum. All the formulation factors affected the size of microspheres. The structure of plasmid remained unchanged during the encapsulation process and the release studies. Plasmid encapsulation efficiency of chitosan microspheres was high (82-92%). The zeta potential values of microspheres was approximately +5.2 to +12.4 mV. In vitro release properties of microspheres changed with formulation variables. In vitro release of DNA changed with the concentration and molecular weight of chitosan and initial plasmid amount. Addition of glutaraldehyde is not necessary for a formulation. MAT-LyLu, the rat prostate adenocarcinoma cell line, was used for the determination of the in vitro transfectional activity of IL-2 encoding plasmid DNA loaded chitosan microspheres and the level of IL-2 expressed into the cells was assayed using a ELISA kit. High level of IL-2 expression was obtained with plasmid-loaded chitosan microspheres. Microspheres showed similar IL-2 production as lipofectin. The molecular weight of chitosan used and the amount of plasmid influenced the in vitro IL-2 production in the cells. Encapsulation of IL-2 encoding gene into chitosan microspheres might be a useful strategy to increase the expression and to control the delivery of cytokine gene to cells. (C) 2004 Elsevier B.V. All rights reserved.Publication Metadata only Effects of different forms of chitosan on intercellular junctions of mouse fibroblasts in vitro(TAYLOR & FRANCIS INC, 2016) ÖZBAŞ, SUNA; Uslu, B.; Biltekin, B.; Denir, S.; Ozbas-Turan, S.; Arbak, S.; Akbuga, J.; Bilir, A.Chitosan is a linear polysaccharide that has many biomedical applications. We compared the effects of chitosan, in both solution and membranous form, on intercellular adhesion of Swiss 3T3 mouse fibroblasts. Cells were grown as spheroidal cell cultures. Some control cell spheroids were cultured without chitosan and two experimental groups were cultured with chitosan. Chitosan in solution was used for one experimental group and chitosan in membranous form was used for the other. For each group, intercellular adhesion was investigated on days 5 and 10 of culture. Transmission electron microscopy revealed well-defined cellular projections that were more prominent in cells exposed to either membranous or solution forms of chitosan than to the chitosan-free control. Immunocytochemical staining of ICAM-1 and e-cadherin was used to determine the development of intercellular junctions. Compared to the weakly stained control, strong reactions were observed in both chitosan exposed groups at both 5 and 10 days. Cells were treated with 5-bromo-2-deoxyuridine (BrdU) and incubated with anti-BrdU primary antibody to assess proliferation. Both the solution and membranous forms of chitosan increased proliferation at both 5 and 10 days. Cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT). The MTT assay indicated high cell viability; maximum viability was obtained with the solution form of chitosan at day 5. Chitosan exposure increased the number of intercellular junctions and showed a significant proliferative effect on 3T3 mouse fibroblasts.Publication Open Access In Vitro PDGF-B Gene Silencing Studies and In Vivo Delivery of siRNA to the Rat Kidney Using Chitosan/siRNA Nanoplexes(MARMARA UNIV, FAC MEDICINE, 2016-05-12) ÖZBAŞ, SUNA; Salva, Emine; Ozbas Turan, Suna; Alan, Saadet; Akbuga, JulideThe targeting of specific genes responsible from onset and progression of kidney diseases offer a new therapeutic strategy in the field of renal gene therapy. The altered expression of platelet derived growth factor (PDGF) is an important marker of renal diseases. In this study, we investigated in vitro gene silencing efficiency of chitosan nanoplexes containing PDGF-B and PDGFR-beta targeted siRNAs in the kidney cell lines including HEK-293 and MDCK and delivery to the kidney as an in vivo delivery system. As a result, PDGF-B expression was significantly inhibited by co-delivery of chitosan/siPDGF-B+siPDGFR-beta nanoplexes prepared using in the different weight ratios (10/1, 20/1 and 50/1). When 20/1 and 50/1 weight ratios of chitosan nanoplexes were i.v. injected to rats, chitosan/FITC-siPDGFB nanoplexes were reached to kidney tissue at 4 h after intravenous injection. These results suggest that delivery of siRNA using chitosan nanoplexes may be effective for the therapy of kidney diseases.