Person: İRİBOZ, EMRE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
İRİBOZ
First Name
EMRE
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Shaping ability of novel nickel-titanium systems in printed primary molars.(2022-10-01) İRİBOZ, EMRE; Güçyetmez Topal B., Falakaloğlu S., Silva E. J. N. L. , Gündoğar M., İriboz E.BackgroundManual or mechanized instruments can be used for root canal preparation. Manual instrumentation using K-files is widely used in primary teeth, but there are many limitations. Mechanized root canal preparation can lead to easy access to all canals, decrease instrumentation time, and result in more funnel-shaped root canals, resulting in a more predictable uniform paste fill.AimThis study aimed to evaluate the shaping ability and instrumentation time of VDW.ROTATE™ and EdgeTaper Platinum™ during the preparation of resin-printed primary molars. Hand K-files were used as a reference for comparison.DesignSixty-six resin-based maxillary second primary molars, obtained from extracted tooth cone-beam computed tomography (CBCT) image and printed on a three-dimensional printer, were divided into three groups: VDW.ROTATE™, EdgeTaper Platinum™, and K-files. The specimens were scanned using CBCT imaging before and after root canal preparation. Images were registered using a dedicated software, and changes (Δ) in the canal area, volume, and untouched canal surface were calculated. Instrumentation time was evaluated. Data were statistically analyzed using the SPSS program.ResultsThere was no significant difference among the tested file systems for Δ canal volume and area (p > .05). VDW.ROTATE™, however, showed significantly lower untouched canal surface area than other systems in all roots (p < .001). The VDW.ROTATE™ was found to be significantly faster (6.47 ± 0.39 min) than EdgeTaper Platinum™ (7.71 ± 0.73 min) and K-files (8.22 ± 0.72 min), (p < .05).ConclusionsThe shaping ability and the instrumentation time were directly influenced by the root canal instrumentation system used during the preparation of resin-printed primary molars, with VDW.ROTATE™ being the faster system and associated with the lower amount of untouched canal surface area.Publication Metadata only Shaping ability of modern Nickel-Titanium rotary systems on the preparation of printed mandibular molars(2022-09-01) İRİBOZ, EMRE; Falakaloǧlu S., Silva E., Topal B., İRİBOZ E., Gündoǧar M.© 2022 Wolters Kluwer Medknow Publications. All rights reserved.Introduction: This study aimed to evaluate the shaping ability of TruNatomy (Dentsply Maillefer, Ballaigues, Switzerland), VDW.ROTATE (VDW GmbH, Munich, Germany) and ProTaper Gold (Dentsply Maillefer, Ballaigues, Switzerland) during the preparation of resin-printed mandibular molar mesial root canals. Materials and Methods: Thirty-three printed resin-based mandibular mesial roots with two canals were obtained from extract tooth cone-beam computed tomography (CBCT) image. The printed teeth were divided into three groups (n = 11) according to the system used for root canal preparation: TruNatomy, VDW.ROTATE, and ProTaper Gold. The specimens were scanned using CBCT imaging before and after root canal preparation. Then images were registered using a dedicated software and changes in the canal area, volume, untouched canal surface, and the maximum and minimum dentin wall wear were calculated. Statistical Analysis Used: Data were statistically analyzed using Shapiro-Wilk for normality, one-way ANOVA, and Tukey or Kruskal-Wallis H tests with alpha set at 5%. Results: No differences were observed for changes in the canal area, volume, untouched canal surface area, and minimum dentine wall wear parameters for the whole canal length (P > 0.05). The mean of untouched canal surface area for the TruNatomy, VDW.ROTATE, and ProTaper Gold was 40%, 44%, and 44%, respectively. The maximum dentine wall wear was significantly lower in the ProTaper Gold group than in the TruNatomy and VDW.ROTATE groups (P < 0.05). Conclusions: TruNatomy, VDW.ROTATE, and ProTaper Gold systems showed similar shaping ability in printed resin-based mandibular mesial roots without clinically significant errors. A large amount of untouched canal surface area was observed for all systems.